Monsters
GP: 6 | W: 2 | L: 4
GF: 18 | GA: 20 | PP%: 13.04% | PK%: 80.00%
DG: Eric Leclerc | Morale : 75 | Moyenne d’équipe : 63
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Monsters
2-4-0, 4pts
5
FINAL
3 Wolves
7-6-0, 14pts
Team Stats
OTL1StreakOTL1
1-2-0Home Record4-3-0
1-2-0Away Record3-3-0
2-2-2Last 10 Games4-5-1
3.00Buts par match 3.23
3.33Buts contre par match 3.31
13.04%Pourcentage en avantage numérique15.91%
80.00%Pourcentage en désavantage numérique82.61%
Wolves
7-6-0, 14pts
4
FINAL
3 Monsters
2-4-0, 4pts
Team Stats
OTL1StreakOTL1
4-3-0Home Record1-2-0
3-3-0Away Record1-2-0
4-5-1Last 10 Games2-2-2
3.23Buts par match 3.00
3.31Buts contre par match 3.33
15.91%Pourcentage en avantage numérique13.04%
82.61%Pourcentage en désavantage numérique80.00%
Meneurs d'équipe
Steven SantiniButs
Steven Santini
0
Steven SantiniPasses
Steven Santini
0
Steven SantiniPoints
Steven Santini
0
Nathan ToddPlus/Moins
Nathan Todd
0
Charlie LindgrenVictoires
Charlie Lindgren
2
Kevin PoulinPourcentage d’arrêts
Kevin Poulin
0.904

Statistiques d’équipe
Buts pour
18
3.00 GFG
Tirs pour
224
37.33 Avg
Pourcentage en avantage numérique
13.0%
3 GF
Début de zone offensive
41.6%
Buts contre
20
3.33 GAA
Tirs contre
200
33.33 Avg
Pourcentage en désavantage numérique
80.0%
6 GA
Début de la zone défensive
39.9%
Information d’équipe

Directeur généralEric Leclerc
EntraîneurBenoit Groulx
DivisionCentral Division
ConférenceWestern Conference
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance3,000
Billets de saison300


Information formation

Équipe Pro27
Équipe Mineure19
Limite contact 46 / 80
Espoirs24


Historique d'équipe

Saison actuelle2-4
Historique75-77-13 (0.455%)
Apparitions séries éliminatoires 0
Historique séries éliminatoires (W-L)2-4
Stanley Cup0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Nom du joueur
#
C
L
R
D
CON
CK
FG
DI
SK
ST
EN
DU
PH
FO
PA
SC
DF
PS
EX
LD
PO
MO
OV
TA
SP
Âge
Contrat
Salaire
1Rasmus Asplund (R)0XXX100.005634897274838671797067687165690756702521,650,000$
2Logan Brown0X100.00847580649678796775686465636668075670242995,000$
3Philip Tomasino (R)0X100.00583486736879847166706359726163075650212925,000$
4Liam Foudy (R)0X100.00603887697886706777645967716364075640222925,000$
5Brendan Lemieux0XX100.008682596580768564566362566167680756402621,688,000$
6Sean Malone0X100.00633470667478716575646359656769075630271750,000$
7Turner Elson0X100.00713892587385865968585960597072075620302925,000$
8Maxim Letunov (R)0X100.00733990588278925761546062596668075620263850,000$
9Ryan Dmowski (R)0X100.00663889597992615755546157596567075610251700,000$
10Pierre-Olivier Joseph0X100.00693884717786877030716062516365075660231925,000$
11Juuso Valimaki (R)0X100.00683682678385766630705973526466075650242925,000$
12Logan Stanley (R)0X100.007986716299858459307155764565690756502421,141,000$
13Gustav Lindstrom (R)0X100.00643586657787816330735573496364075640241925,000$
14Jordan Spence (R)0X100.00643783666789816530676264526162075640213950,000$
15William Lagesson (R)0X100.00714284628278765730655866496668075630262750,000$
Rayé
1Alex Steeves (R)0X100.00593882656988836765666264656467075640233950,000$
2Mitchell Stephens (R)0X100.00623488637177726083645668576465075620251750,000$
3Nathan Legare (R)0X100.00663983557583855358555657556163075590213950,000$
4Aaron Luchuk (R)0X100.00593792576877605460555653586567075580253950,000$
5Justin Barron (R)0X100.00673891687983756730666461536163075650213950,000$
6Brayden Pachal (R)0X100.006738785679748358305756615263650756002311,000,000$
7Devante Stephens (R)0X100.00694271588064855630565559476567075600251700,000$
8Michael Kim0X100.00633793557264625430585053456769075580271700,000$
MOYENNE D’ÉQUIPE100.0067438363778178625163596357646607563
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Nom du gardien
CON
SK
DU
EN
SZ
AG
RB
SC
HS
RT
PH
PS
EX
LD
PO
MO
OV
TA
SP
Âge
Contrat
Salaire
1Kevin Poulin100.0076747582747375747375747286075660321700,000$
2Charlie Lindgren100.0077737476757476757476757083075660292875,000$
Rayé
1Pat Nagle100.0072727174706971706971707589075640351700,000$
2Ilya Konovalov (R)100.0065707173646365646365646671075590243950,000$
MOYENNE D’ÉQUIPE100.007372737671707271707271718207564
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Benoit Groulx64687372837868CAN5412,000,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Nom du joueur
Nom de l’équipe
POS
GP
G
A
P
+/-
PIM
PIM5
HIT
HTT
SHT
OSB
OSM
SHT%
SB
MP
AMG
PPG
PPA
PPP
PPS
PPM
PKG
PKA
PKP
PKS
PKM
GW
GT
FO%
FOT
GA
TA
EG
HT
P/20
PSG
PSS
FW
FL
FT
S1
S2
S3
1Liam FoudyMonsters (CBJ)C66062002243592217.14%314824.681015200001121158.17%15300000.8100000110
2Rasmus AsplundMonsters (CBJ)C/LW/RW42461201151541213.33%211228.070221140000230027.27%1100001.0700000100
3Juuso ValimakiMonsters (CBJ)D604418013146790.00%1016026.77011120000020000.00%000000.5000000001
4Logan StanleyMonsters (CBJ)D404414018116060.00%1412130.40022214000017000.00%000000.6600000000
5Maxim LetunovMonsters (CBJ)C6224-14067164912.50%110217.0600000000000053.85%1300000.7800000002
6Philip TomasinoMonsters (CBJ)RW622400038284157.14%014123.63101221000180054.55%1100000.5600000100
7Sean MaloneMonsters (CBJ)C6033-10099214150.00%011419.07000212000010050.45%11100000.5200000000
8Logan BrownMonsters (CBJ)C621301002414226149.09%316627.810002210002140054.10%18300000.3600000000
9Jordan SpenceMonsters (CBJ)D6033360101114170.00%1315726.21000520000022000.00%000000.3800000000
10Gustav LindstromMonsters (CBJ)D60220205106340.00%711919.870002600007000.00%000000.3400000000
11Turner ElsonMonsters (CBJ)LW6202-100109144414.29%011819.7200017000081030.00%1000000.3400000000
12Pierre-Olivier JosephMonsters (CBJ)D6112080671031110.00%917529.17101721000023000.00%000000.2300000001
13Brendan LemieuxMonsters (CBJ)LW/RW60221402311124110.00%314323.99000219000060033.33%1500000.2800000000
14Ryan DmowskiMonsters (CBJ)LW61010001461416.67%0528.7500000000000050.00%600000.3800000000
15William LagessonMonsters (CBJ)D6011-2601464140.00%211018.400000000008000.00%000000.1800000000
16Mitchell StephensMonsters (CBJ)C4011200497170.00%08120.3500017000040046.67%1500000.2500000000
17Steven SantiniBlue JacketsD2000-140831000.00%23417.380000000002000.00%000000.0000000000
18Nathan ToddBlue JacketsC2000000000000.00%000.380000000000000.00%000000.0000000000
Statistiques d’équipe totales ou en moyenne941830485580157172223561548.07%69206121.933583320900041812152.65%52800000.4700000314
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Nom du gardien
Nom de l’équipe
GP
W
L
OTL
PCT
GAA
MP
PIM
SO
GA
SA
SAR
A
EG
PS %
PSA
ST
BG
S1
S2
S3
1Charlie LindgrenMonsters (CBJ)42110.9022.5730420131320000.000040000
2Kevin PoulinMonsters (CBJ)20100.9042.80107005520010.000024000
Statistiques d’équipe totales ou en moyenne62210.9022.6241220181840010.000064000


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur
Nom de l’équipe
POS
Âge
Date de naissance
Nouveau joueur
Poids
Taille
Non-échange
Disponible pour échange
Ballotage forcé
Contrat
Type
Salaire actuel
Salaire restant
Salaire moyen
Salaire moyen restant
Plafond salarial
Plafond salarial restant
Exclus du plafond salarial
Salaire annuel 2
Salaire annuel 3
Salaire annuel 4
Salaire annuel 5
Salaire annuel 6
Salaire annuel 7
Salaire annuel 8
Salaire annuel 9
Salaire annuel 10
Link
Aaron LuchukMonsters (CBJ)C254/4/1997Yes180 Lbs5 ft11NoNoNo3Pro & Farm950,000$950,000$0$0$No950,000$950,000$Lien / Lien NHL
Alex SteevesMonsters (CBJ)C2312/10/1999Yes185 Lbs5 ft11NoNoNo3Pro & Farm950,000$950,000$0$0$No950,000$950,000$Lien / Lien NHL
Brayden Pachal (contrat à 1 volet)Monsters (CBJ)D238/23/1999Yes204 Lbs6 ft1NoNoNo1Pro & Farm1,000,000$1,000,000$1,000,000$0$NoLien / Lien NHL
Brendan Lemieux (contrat à 1 volet)Monsters (CBJ)LW/RW263/15/1996No215 Lbs6 ft1NoNoNo2Pro & Farm1,688,000$1,688,000$1,688,000$0$No1,688,000$Lien / Lien NHL
Charlie LindgrenMonsters (CBJ)G2912/18/1993No179 Lbs6 ft2NoNoNo2Pro & Farm875,000$875,000$0$0$No875,000$Lien / Lien NHL
Devante StephensMonsters (CBJ)D251/2/1997Yes185 Lbs6 ft3NoNoNo1Pro & Farm700,000$700,000$0$0$NoLien / Lien NHL
Gustav LindstromMonsters (CBJ)D2410/20/1998Yes183 Lbs6 ft2NoNoNo1Pro & Farm925,000$925,000$0$0$NoLien / Lien NHL
Ilya KonovalovMonsters (CBJ)G247/13/1998Yes194 Lbs6 ft0NoNoNo3Pro & Farm950,000$950,000$0$0$No950,000$950,000$Lien
Jordan SpenceMonsters (CBJ)D212/24/2001Yes180 Lbs5 ft10NoNoNo3Pro & Farm950,000$950,000$0$0$No950,000$950,000$Lien
Justin BarronMonsters (CBJ)D2111/15/2001Yes195 Lbs6 ft2NoNoNo3Pro & Farm950,000$950,000$0$0$No950,000$950,000$Lien
Juuso ValimakiMonsters (CBJ)D2410/6/1998Yes212 Lbs6 ft2NoNoNo2Pro & Farm925,000$925,000$0$0$No925,000$Lien
Kevin PoulinMonsters (CBJ)G324/12/1990No206 Lbs6 ft2NoNoNo1Pro & Farm700,000$700,000$0$0$NoLien / Lien NHL
Liam FoudyMonsters (CBJ)C222/4/2000Yes187 Lbs6 ft2NoNoNo2Pro & Farm925,000$925,000$0$0$No925,000$Lien
Logan BrownMonsters (CBJ)C243/5/1998No218 Lbs6 ft6NoNoNo2Pro & Farm995,000$995,000$0$0$No995,000$Lien / Lien NHL
Logan Stanley (contrat à 1 volet)Monsters (CBJ)D245/26/1998Yes228 Lbs6 ft7NoNoNo2Pro & Farm1,141,000$1,141,000$1,141,000$0$No1,141,000$Lien / Lien NHL
Maxim LetunovMonsters (CBJ)C262/20/1996Yes180 Lbs6 ft4NoNoNo3Pro & Farm850,000$850,000$0$0$No850,000$850,000$Lien / Lien NHL
Michael KimMonsters (CBJ)D276/28/1995No200 Lbs5 ft11NoNoNo1Pro & Farm700,000$700,000$0$0$NoLien / Lien NHL
Mitchell StephensMonsters (CBJ)C252/5/1997Yes190 Lbs5 ft11NoNoNo1Pro & Farm750,000$750,000$0$0$NoLien / Lien NHL
Nathan LegareMonsters (CBJ)RW211/11/2001Yes205 Lbs6 ft0NoNoNo3Pro & Farm950,000$950,000$0$0$No950,000$950,000$Lien
Pat NagleMonsters (CBJ)G359/21/1987No169 Lbs6 ft2NoNoNo1Pro & Farm700,000$700,000$0$0$NoLien / Lien NHL
Philip TomasinoMonsters (CBJ)RW217/28/2001Yes179 Lbs6 ft0NoNoNo2Pro & Farm925,000$925,000$0$0$No925,000$Lien
Pierre-Olivier JosephMonsters (CBJ)D237/1/1999No185 Lbs6 ft2NoNoNo1Pro & Farm925,000$925,000$0$0$NoLien / Lien NHL
Rasmus Asplund (contrat à 1 volet)Monsters (CBJ)C/LW/RW2512/3/1997Yes189 Lbs5 ft11NoNoNo2Pro & Farm1,650,000$1,650,000$1,650,000$0$No1,650,000$Lien / Lien NHL
Ryan DmowskiMonsters (CBJ)LW253/11/1997Yes209 Lbs6 ft1NoNoNo1Pro & Farm700,000$700,000$0$0$NoLien / Lien NHL
Sean MaloneMonsters (CBJ)C274/30/1995No197 Lbs6 ft0NoNoNo1Pro & Farm750,000$750,000$0$0$NoLien / Lien NHL
Turner ElsonMonsters (CBJ)LW309/13/1992No191 Lbs6 ft0NoNoNo2Pro & Farm925,000$925,000$0$0$No925,000$Lien / Lien NHL
William LagessonMonsters (CBJ)D262/22/1996Yes207 Lbs6 ft2NoNoNo2Pro & Farm750,000$750,000$0$0$No750,000$Lien / Lien NHL
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2725.11195 Lbs6 ft11.89933,296$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Rasmus AsplundLogan BrownPhilip Tomasino40023
2Brendan LemieuxLiam Foudy30023
3Turner ElsonSean MaloneMaxim Letunov20032
4Ryan DmowskiLogan Brown10032
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Pierre-Olivier JosephLogan Stanley30032
2Juuso ValimakiJordan Spence30032
3Gustav LindstromWilliam Lagesson20032
4Pierre-Olivier JosephLogan Stanley20032
Attaque en svantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Rasmus AsplundLogan BrownPhilip Tomasino60023
2Brendan LemieuxLiam FoudySean Malone40023
Défense en svantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Pierre-Olivier JosephLogan Stanley60122
2Juuso ValimakiJordan Spence40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Rasmus Asplund60032
2Liam FoudyLogan Brown40041
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Pierre-Olivier JosephLogan Stanley60041
2Juuso ValimakiJordan Spence40041
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Rasmus Asplund60122Pierre-Olivier JosephLogan Stanley60122
240122Juuso ValimakiJordan Spence40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Logan BrownRasmus Asplund60032
2Philip TomasinoBrendan Lemieux40032
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Pierre-Olivier JosephLogan Stanley60032
2Juuso ValimakiJordan Spence40032
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Rasmus AsplundLogan BrownPhilip TomasinoPierre-Olivier JosephLogan Stanley
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Rasmus AsplundLogan BrownPhilip TomasinoPierre-Olivier JosephLogan Stanley
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Sean Malone, Maxim Letunov, Turner ElsonSean Malone, Maxim LetunovTurner Elson
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Gustav Lindstrom, William Lagesson, Juuso ValimakiGustav LindstromWilliam Lagesson, Juuso Valimaki
Tirs de pénalité
Logan Brown, Rasmus Asplund, Philip Tomasino, Brendan Lemieux, Liam Foudy
Gardien
#1 : Charlie Lindgren, #2 : Kevin Poulin
Lignes d’attaque personnalisées en prolongation
Logan Brown, Rasmus Asplund, Philip Tomasino, Brendan Lemieux, Liam Foudy, Sean Malone, Sean Malone, , Maxim Letunov, Turner Elson, Ryan Dmowski
Lignes de défense personnalisées en prolongation
Pierre-Olivier Joseph, Logan Stanley, Juuso Valimaki, Jordan Spence, Gustav Lindstrom


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Total
Domicile
Visiteur
#
VS Équipe
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
P
PCT
G
A
TP
SO
EG
GP1
GP2
GP3
GP4
SHF
SH1
SP2
SP3
SP4
SHA
SHB
Pim
Hit
PPA
PPG
PP%
PKA
PK GA
PK%
PK GF
W OF FO
T OF FO
OF FO%
W DF FO
T DF FO
DF FO%
W NT FO
T NT FO
NT FO%
PZ DF
PZ OF
PZ NT
PC DF
PC OF
PC NT
1Wolves624000001820-231200000910-131200000910-140.33318304810963022471585144200696015723313.04%30680.00%011624447.54%11323448.29%6510959.63%183128165529145
Total624000001820-231200000910-131200000910-140.33318304810963022471585144200696015723313.04%30680.00%011624447.54%11323448.29%6510959.63%183128165529145
_Since Last GM Reset624000001820-231200000910-131200000910-140.33318304810963022471585144200696015723313.04%30680.00%011624447.54%11323448.29%6510959.63%183128165529145
_Vs Conference624000001820-231200000910-131200000910-140.33318304810963022471585144200696015723313.04%30680.00%011624447.54%11323448.29%6510959.63%183128165529145

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
64OTL1183048224200696015710
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
62400001820
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
3120000910
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
3120000910
Derniers 10 matchs
WLOTWOTL SOWSOL
220200
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
23313.04%30680.00%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
715851449630
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
11624447.54%11323448.29%6510959.63%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
183128165529145


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Jour
Match
Équipe visiteuse
Score
Équipe locale
Score
ST
OT
SO
RI
Lien
2 - 2023-04-145Monsters2Wolves3ALXSommaire du match
4 - 2023-04-1613Monsters2Wolves4ALSommaire du match
6 - 2023-04-1821Wolves3Monsters1BLSommaire du match
8 - 2023-04-2029Wolves3Monsters5BWSommaire du match
10 - 2023-04-2237Monsters5Wolves3AWSommaire du match
12 - 2023-04-2445Wolves4Monsters3BLXSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets2515
Assistance6,0003,000
Assistance PCT100.00%100.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
38 3000 - 100.00% 81,250$243,750$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
0$ 1,972,000$ 1,972,000$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 0$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 0$ 0$




Monsters Leaders statistiques (saison régulière)

#
Nom du joueur
GP
G
A
P
+/-
PIM
HIT
HTT
SHT
SHT%
SB
MP
AMG
PPG
PPA
PPP
PPS
PKG
PKA
PKP
PKS
GW
GT
FO%
HT
P/20
PSG
PSS
1Philip Tomasino98526111332127819139713.10%18217322.18720276100026351.01%01.0416
2Pierre-Olivier Joseph99178610316512301481849.24%140234823.7382230871123010.00%00.8800
3Liam Foudy80465410018207928734913.18%25154319.301410245302228258.40%01.3013
4Juuso Valimaki90237598174618014115814.56%130204422.71131427840001220.00%00.9600
5Logan Brown77354883159127328429911.71%29180223.41614203900067256.34%20.9214

Monsters Leaders des statistiques des gardiens (saison régulière)

#
Nom du gardien
GP
W
L
OTL
PCT
GAA
MP
PIM
SO
GA
SA
SAR
A
EG
PS %
PSA
1Ilya Samsonov83552530.9152.8949658223928020210.75929
2Charlie Lindgren46271310.9003.3424822113813790210.85714
3Kevin Poulin33121140.8863.961635201089510400.0000
4Sean Bonar57104040.8955.5929084027125700120.7508

Monsters Statistiques de l'Équipe de Carrière

Total
Domicile
Visiteur
Année
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
P
G
A
TP
SO
EG
GP1
GP2
GP3
GP4
SHF
SH1
SP2
SP3
SP4
SHA
SHB
Pim
Hit
PPA
PPG
PP%
PKA
PK GA
PK%
PK GF
W OF FO
T OF FO
OF FO%
W DF FO
T DF FO
DF FO%
W NT FO
T NT FO
NT FO%
PZ DF
PZ OF
PZ NT
PC DF
PC OF
PC NT
Saison régulière
2382224904223281386-10541132202202148189-414192702021133197-6461281514795201121006383135104410341024543890108049721492335021.46%2215475.57%31181295739.94%1390363138.28%572147138.89%1666114522885951002462
20228239280563134230933412410034001761354141151802231166174-81013426229641113010797930199731005100454283885150519462587127.52%2085374.52%21687304355.44%1492281852.95%727143150.80%2147155117995581015525
Total Saison régulière164617709854623695-7282373205602324324082244504252299371-721626231136175931242207160176154201720392028108672819311002409549112124.64%42910775.06%52868600047.80%2882644944.69%1299290244.76%38132696408711532018988
2022624000001820-231200000910-131200000910-1418304810963022471585144200696015723313.04%30680.00%011624447.54%11323448.29%6510959.63%183128165529145
Total Séries éliminatoires624000001820-231200000910-131200000910-1418304810963022471585144200696015723313.04%30680.00%011624447.54%11323448.29%6510959.63%183128165529145

Monsters Leaders statistiques (séries éliminatoires)

#
Nom du joueur
GP
G
A
P
+/-
PIM
HIT
HTT
SHT
SHT%
SB
MP
AMG
PPG
PPA
PPP
PPS
PKG
PKA
PKP
PKS
GW
GT
FO%
HT
P/20
PSG
PSS
1Liam Foudy6606202243517.14%314824.68101500011158.17%00.8100
2Rasmus Asplund4246121151513.33%211228.07022100000027.27%01.0700
3Philip Tomasino62240038287.14%014123.63101200010054.55%00.5600
4Juuso Valimaki604418131460.00%1016026.7701110000000.00%00.5000
5Maxim Letunov6224-14671612.50%110217.06000000000053.85%00.7800

Monsters Leaders des statistiques des gardiens (séries éliminatoires)

#
Nom du gardien
GP
W
L
OTL
PCT
GAA
MP
PIM
SO
GA
SA
SAR
A
EG
PS %
PSA
1Charlie Lindgren42110.9022.5730420131320000.0000
2Kevin Poulin20100.9042.80107005520010.0000