Wolves
GP: 82 | W: 41 | L: 33 | OTL: 8 | P: 90
GF: 307 | GA: 297 | PP%: 21.61% | PK%: 83.06%
GM : Yves Ayotte | Morale : 75 | Team Overall : 60
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Wolves
41-33-8, 90pts
1
FINAL
4 IceHogs
45-26-11, 101pts
Team Stats
L3StreakW1
25-11-5Home Record21-12-8
16-22-3Away Record24-14-3
5-4-1Last 10 Games4-2-4
3.74Goals Per Game3.84
3.62Goals Against Per Game3.50
21.61%Power Play Percentage25.38%
83.06%Penalty Kill Percentage76.45%
Wolves
41-33-8, 90pts
1
FINAL
6 Monsters
44-34-4, 92pts
Team Stats
L3StreakW4
25-11-5Home Record18-20-3
16-22-3Away Record26-14-1
5-4-1Last 10 Games6-3-1
3.74Goals Per Game3.44
3.62Goals Against Per Game3.61
21.61%Power Play Percentage17.54%
83.06%Penalty Kill Percentage80.94%
Team Leaders
Nick SeelerGoals
Nick Seeler
15
Nick SeelerAssists
Nick Seeler
30
Nick SeelerPoints
Nick Seeler
45
Nick SeelerPlus/Minus
Nick Seeler
10
Michael HutchinsonWins
Michael Hutchinson
28
Jiri PateraSave Percentage
Jiri Patera
0.901

Team Stats
Goals For
307
3.74 GFG
Shots For
2902
35.39 Avg
Power Play Percentage
21.6%
51 GF
Offensive Zone Start
40.9%
Goals Against
297
3.62 GAA
Shots Against
2903
35.40 Avg
Penalty Kill Percentage
83.1%
51 GA
Defensive Zone Start
40.3%
Team Info

General ManagerYves Ayotte
CoachJohn Wroblewski
DivisionCentral Division
ConferenceWestern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,961
Season Tickets300


Roster Info

Pro Team41
Farm Team20
Contract Limit61 / 80
Prospects68


Team History

This Season41-33-8 (90PTS)
History140-85-21 (0.569%)
Playoff Appearances1
Playoff Record (W-L)7-6
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Gage Quinney0XX100.00633791667291796369666462656870075650281999,000$
2Mathieu Olivier (R)0XX100.00898465648178836356625869606667075640261974,100$
3Jakub Lauko (R)0X100.00714369657478816463606359626465075630233925,000$
4Sampo Ranta (R)0XX100.00693884627983815957585962586365075620231925,000$
5Daniel Torgersson (R)0XX100.00743994588380735758556160596163075610213950,000$
6Milos Kelemen0XX100.00734074608277735962585960646566075610243888,100$
7Jonathan Gruden (R)0X100.00653971606975855965586057606365075610231925,000$
8Dino Kambeitz0XX100.00744083558374815457565658556365075600232999,999$
9Urho Vaakanainen0X100.006937886580867463306558645064660756402421,043,000$
10Brandon Scanlin0X100.00804087558965735230545358466466075600243750,000$
11Matt Bartkowski0X100.00694079547871865330555256457577075600351999,000$
12Chad Nychuk0X100.00673695567664615530605056456264075590223999,999$
13Luke Martin (R)0X100.00754081558470655430575258466567075590253950,000$
Scratches
1Drake Caggiula0XXX99.67643881686690766470656268637072075650292999,999$
2Matej Blumel (R)0XX100.00653795667487716566606359646563075630233950,000$
3John Beecher (R)0XX93.38764085598579725863575860566264075610223950,000$
4Josh Doan (R)0X100.00653695597487615861575956596163075600213950,000$
5Matt Rempe0X100.00904861549971695357525561546163075600213999,999$
6Riley Sutter (R)0X100.00794278538870805259535458536466075590243999,999$
7Isaac Johnson0XX100.00683895547774635357545556536466075590242999,999$
8Donald Busdeker (R)0X100.00573974566672825558575453596466075580243825,000$
9Max Ellis0X100.00603588556085695458555652536365075580233999,999$
10Ty Glover0XX100.00743891548374695361525456525860075580233999,999$
11Samuel Houde0X100.00603882556971755462555653546365075580233999,999$
12Andrei Bakanov0X100.00774090518667625052515056506163075570212825,000$
13Jaydon Dureau0X100.00583695556764625458525751556264075570223999,999$
14Navrin Mutter0X100.00724465538165695258535456536264075570223999,999$
15Matej Pekar (R)0XX100.00653972547473705362555154526365075570231925,000$
16Reece Vitelli0X100.00593695526869615152535450536264075560222999,999$
17Tyson Kozak0X100.00583977546771695258535451536163075560213999,999$
18Vincent Desharnais (R)0X100.00817973639580816230645873496769075650272999,999$
19Vincent Sevigny0X100.00693983567864695530575456466264075590223999,999$
20Calle Sjalin0X100.00643982547370665330525654466466075580243925,000$
21Jack St. Ivany0X100.00744083568365715230545057456466075580243999,999$
22Layton Ahac (R)0X100.00693989557864725230535154456264075580221925,000$
23Andrew Perrott0X100.00654078537471615230535452456264075570222825,000$
24Luka Profaca0X100.00704272527962685130535254456163075570213999,999$
TEAM AVERAGE99.8170418257787472565056565853646507560
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Michael Hutchinson100.0073697084727173727173727587075650331900,000$
2Jiri Patera (R)100.0074656682737274737274736471075640242999,999$
Scratches
1Ryan Bednard (R)100.0067555691666567666768666575075610263825,000$
2Pavel Cajan100.0066626376656466656466656165075590213999,999$
TEAM AVERAGE100.007063648369687069697069667507562
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
John Wroblewski66627469625885USA422900,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Matej BlumelWolves (CAR)LW/RW8143428515100381253086822513.96%15157319.43610164017600031323258.65%13300021.0802000625
2Mathieu OlivierWolves (CAR)LW/RW79315384149553531462917620610.65%27165620.97514194420100062168148.24%17000011.01160011171
3Gage QuinneyWolves (CAR)C/LW802557821914019232292941998.56%27164320.54315184920401111272154.11%230100001.0018000527
4Drake CaggiulaWolves (CAR)C/LW/RW753839771980282063318122311.48%26168822.51510155418611273003251.78%53500010.9128000475
5Jakub LaukoWolves (CAR)C8224487212380208205248591849.68%13144317.604913521730001105249.40%191100011.0001000246
6Vincent DesharnaisWolves (CAR)D7819466517602571131404912213.57%134182623.418816481861011229530.00%000000.7100000365
7Sampo RantaWolves (CAR)LW/RW812227498200961192167214210.19%18133016.422351984000071142.71%9600000.7400000163
8Nick SeelerHurricanesD4615304510200959682175318.29%81108323.5610515401080222136110.00%000000.8300000033
9Matt BartkowskiWolves (CAR)D8273138-54551315360225111.67%108173421.15347221750000170200.00%000000.4400010020
10John BeecherWolves (CAR)C/LW78152035-8280110146164471509.15%22112414.41033179610161052050.08%123000100.6200000300
11Luke MartinWolves (CAR)D82529349780193555422519.26%109153818.7604413880000179000.00%000000.4400000110
12Milos KelemenWolves (CAR)LW/RW82151429-940089104162451209.26%14105812.910110150110891051.37%14600000.5511000101
13Jonathan GrudenWolves (CAR)LW8282028-91607373142341245.63%497411.88011113000052055.70%7900000.5701000000
14Vincent SevignyWolves (CAR)D6442327114001034038131910.53%7198215.34011112000029000.00%000000.5500000001
15Chad NychukWolves (CAR)D61516211720055353382515.15%6899116.25101524000060010.00%000000.4200000101
16Urho VaakanainenWolves (CAR)D3041418-218031505418377.41%3870223.4113423860001110100.00%000000.5100000010
17Daniel TorgerssonWolves (CAR)LW/RW829817-7140404586356610.47%105977.29101150000190054.55%4400000.5700000101
18Brandon ScanlinWolves (CAR)D484812-13320101254918268.16%6096320.0720220970000113100.00%000000.2500000001
19Dino KambeitzWolves (CAR)C/RW824812-1224057726716525.97%45456.6500000000001044.59%61900000.4400000021
20Josh DoanWolves (CAR)RW776511-82015237215528.33%54666.0600000000010036.67%3000000.4700000000
21Matt RempeWolves (CAR)C8011220934130.00%1384.7800000000040045.24%4200000.5200000000
22Isaac JohnsonWolves (CAR)LW/RW6011300116060.00%0457.6200001000020057.14%700000.4400000000
23Jack St. IvanyWolves (CAR)D1000020210110.00%01717.880000300000000.00%000000.0000000000
24Donald BusdekerWolves (CAR)RW1000000110000.00%099.020000000000000.00%100000.0000000000
25Riley SutterWolves (CAR)C6000-255111020.00%0162.8100000000020021.43%1400000.0000001000
Team Total or Average14743035408436564715210619702900811213910.45%8552405216.3251911424491943358282053381450.82%735800150.70527012394341
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael HutchinsonWolves (CAR)60282650.8993.6035020121020860200.682225923430
2Jiri PateraWolves (CAR)2713730.9013.33146000818170000.50062359001
Team Total or Average87413380.9003.5249630129129030200.643288282431


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Andrei BakanovWolves (CAR)LW215/8/2002No214 Lbs6 ft3NoNoNo2Pro & Farm825,000$825,000$0$0$No825,000$Link / NHL Link
Andrew PerrottWolves (CAR)D228/24/2001No217 Lbs5 ft10NoNoNo2Pro & Farm825,000$825,000$0$0$No825,000$Link / NHL Link
Brandon ScanlinWolves (CAR)D246/2/1999No214 Lbs6 ft4NoNoNo3Pro & Farm750,000$750,000$0$0$No750,000$750,000$Link / NHL Link
Calle SjalinWolves (CAR)D249/2/1999No179 Lbs6 ft1NoNoNo3Pro & Farm925,000$925,000$0$0$No925,000$925,000$Link / NHL Link
Chad NychukWolves (CAR)D223/6/2001No194 Lbs6 ft1NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Daniel TorgerssonWolves (CAR)LW/RW211/26/2002Yes199 Lbs6 ft3NoNoNo3Pro & Farm950,000$550,000$0$0$No950,000$950,000$Link / NHL Link
Dino KambeitzWolves (CAR)C/RW231/25/2000No212 Lbs6 ft2NoNoNo2Pro & Farm999,999$999,999$0$0$No999,999$Link / NHL Link
Donald BusdekerWolves (CAR)RW249/25/1999Yes180 Lbs5 ft10NoNoNo3Pro & Farm825,000$825,000$0$0$No825,000$825,000$Link / NHL Link
Drake CaggiulaWolves (CAR)C/LW/RW296/20/1994No176 Lbs5 ft10NoNoNo2Pro & Farm999,999$999,999$0$0$No999,999$Link / NHL Link
Gage QuinneyWolves (CAR)C/LW287/29/1995No200 Lbs5 ft11NoNoNo1Pro & Farm999,000$999,000$0$0$NoLink / NHL Link
Isaac JohnsonWolves (CAR)LW/RW241/24/1999No185 Lbs6 ft2NoNoNo2Pro & Farm999,999$999,999$0$0$No999,999$Link / NHL Link
Jack St. IvanyWolves (CAR)D247/22/1999No198 Lbs6 ft3NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Jakub LaukoWolves (CAR)C233/28/2000Yes196 Lbs6 ft0NoNoNo3Pro & Farm925,000$925,000$0$0$No925,000$925,000$Link / NHL Link
Jaydon DureauWolves (CAR)LW221/20/2001No173 Lbs5 ft11NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Jiri PateraWolves (CAR)G242/24/1999Yes209 Lbs6 ft2NoNoNo2Pro & Farm999,999$999,999$0$0$No999,999$Link / NHL Link
John Beecher (Out of Payroll)Wolves (CAR)C/LW224/5/2001Yes210 Lbs6 ft3NoNoNo3Pro & Farm950,000$550,000$0$0$Yes950,000$950,000$NHL Link
Jonathan GrudenWolves (CAR)LW235/4/2000Yes172 Lbs6 ft0NoNoNo1Pro & Farm925,000$925,000$0$0$NoLink / NHL Link
Josh DoanWolves (CAR)RW212/1/2002Yes183 Lbs6 ft1NoNoNo3Pro & Farm950,000$550,000$0$0$No950,000$950,000$NHL Link
Layton AhacWolves (CAR)D222/22/2001Yes188 Lbs6 ft2NoNoNo1Pro & Farm925,000$925,000$0$0$NoLink / NHL Link
Luka ProfacaWolves (CAR)D213/30/2002No195 Lbs6 ft2NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Luke MartinWolves (CAR)D259/20/1998Yes219 Lbs6 ft2NoNoNo3Pro & Farm950,000$550,000$0$0$No950,000$950,000$NHL Link
Matej BlumelWolves (CAR)LW/RW235/31/2000Yes200 Lbs6 ft0NoNoNo3Pro & Farm950,000$550,000$0$0$No950,000$950,000$NHL Link
Matej PekarWolves (CAR)C/LW232/10/2000Yes185 Lbs6 ft1NoNoNo1Pro & Farm925,000$925,000$0$0$NoLink / NHL Link
Mathieu OlivierWolves (CAR)LW/RW262/11/1997Yes217 Lbs6 ft1NoNoNo1Pro & Farm974,100$974,100$0$0$NoLink / NHL Link
Matt BartkowskiWolves (CAR)D356/4/1988No201 Lbs6 ft1NoNoNo1Pro & Farm999,000$999,000$0$0$NoLink / NHL Link
Matt RempeWolves (CAR)C216/29/2002No240 Lbs6 ft8NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Max EllisWolves (CAR)RW231/18/2000No154 Lbs5 ft9NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Michael HutchinsonWolves (CAR)G333/2/1990No201 Lbs6 ft3NoNoNo1Pro & Farm900,000$900,000$0$0$NoLink / NHL Link
Milos KelemenWolves (CAR)LW/RW247/6/1999No210 Lbs6 ft2NoNoNo3Pro & Farm888,100$888,100$0$0$No888,100$888,100$Link / NHL Link
Navrin MutterWolves (CAR)LW223/15/2001No190 Lbs6 ft3NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Pavel CajanWolves (CAR)G2110/13/2002No176 Lbs6 ft2NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Reece VitelliWolves (CAR)C227/5/2001No180 Lbs5 ft11NoNoNo2Pro & Farm999,999$999,999$0$0$No999,999$Link / NHL Link
Riley SutterWolves (CAR)C2410/25/1999Yes210 Lbs6 ft4NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Ryan BednardWolves (CAR)G263/31/1997Yes207 Lbs6 ft5NoNoNo3Pro & Farm825,000$825,000$0$0$No825,000$825,000$Link / NHL Link
Sampo RantaWolves (CAR)LW/RW235/31/2000Yes195 Lbs6 ft2NoNoNo1Pro & Farm925,000$925,000$0$0$NoLink / NHL Link
Samuel HoudeWolves (CAR)C233/8/2000No175 Lbs6 ft0NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Ty GloverWolves (CAR)C/LW2310/1/2000No200 Lbs6 ft3NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Tyson KozakWolves (CAR)C2112/29/2002No173 Lbs5 ft11NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Urho Vaakanainen (1 Way Contract)Wolves (CAR)D241/1/1999No200 Lbs6 ft2NoNoNo2Pro & Farm1,043,000$1,043,000$1,043,000$0$No1,043,000$Link / NHL Link
Vincent DesharnaisWolves (CAR)D275/29/1996Yes215 Lbs6 ft6NoNoNo2Pro & Farm999,999$999,999$0$0$No999,999$Link / NHL Link
Vincent SevignyWolves (CAR)D224/14/2001No175 Lbs6 ft3NoNoNo3Pro & Farm999,999$999,999$0$0$No999,999$999,999$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
4123.78196 Lbs6 ft22.39954,956$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Gage QuinneyMathieu Olivier34023
2Jakub LaukoSampo Ranta32122
3Jonathan GrudenMilos Kelemen24131
4Daniel TorgerssonDino Kambeitz10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Urho Vaakanainen36023
2Matt BartkowskiBrandon Scanlin34122
3Chad NychukLuke Martin30131
4Chad NychukMatt Bartkowski0122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Gage QuinneyMathieu Olivier60005
2Jakub Lauko40005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Urho Vaakanainen60005
2Matt BartkowskiBrandon Scanlin40005
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Mathieu Olivier60050
240050
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Urho Vaakanainen60050
2Brandon ScanlinLuke Martin40050
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160050Urho Vaakanainen60050
2Mathieu Olivier40050Luke MartinBrandon Scanlin40050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Gage Quinney60023
2Mathieu Olivier40023
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Urho Vaakanainen60023
2Matt BartkowskiBrandon Scanlin40023
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Gage QuinneyMathieu OlivierUrho Vaakanainen
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Gage QuinneyMathieu OlivierUrho Vaakanainen
Extra Forwards
Normal PowerPlayPenalty Kill
, Jonathan Gruden, Milos Kelemen, Jonathan GrudenMilos Kelemen
Extra Defensemen
Normal PowerPlayPenalty Kill
Chad Nychuk, Luke Martin, Matt BartkowskiChad NychukLuke Martin, Matt Bartkowski
Penalty Shots
Gage Quinney, , Mathieu Olivier, , Jakub Lauko
Goalie
#1 : Michael Hutchinson, #2 : Jiri Patera
Custom OT Lines Forwards
Gage Quinney, , Mathieu Olivier, , Jakub Lauko, Dino Kambeitz, Dino Kambeitz, , Jonathan Gruden, Milos Kelemen, Daniel Torgersson
Custom OT Lines Defensemen
Urho Vaakanainen, Brandon Scanlin, Matt Bartkowski, , Chad Nychuk


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals22000000752110000003211100000043141.0007121900119109748699559619575673218575120.00%4175.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
2Americans3110000110100210000016511010000045-130.5001019290011910974893955961957561172620744250.00%9277.78%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
3Barracuda2010100047-3100010003211010000015-420.500471100119109748679559619575690201955400.00%7357.14%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
4Bears403001001121-1020100100610-420200000511-610.1251119300011910974812795596195756135374210515320.00%21576.19%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
5Bruins321000001112-11010000027-52200000095440.667112031001191097489395596195756102292478900.00%12375.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
6Checkers3200000116115210000018621100000085350.83316304600119109748127955961957561084428969222.22%13284.62%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
7Comets20200000610-41010000034-11010000036-300.00069150011910974872955961957566824639400.00%30100.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
8Condors220000001064110000004221100000064241.000101929001191097486995596195756721120455120.00%10460.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
9Crunch311000101174110000006152010001056-140.66711162700119109748100955961957561072928705240.00%13192.31%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
10Devils32100000171162200000014681010000035-240.667172946001191097481469559619575610628189311436.36%90100.00%11534300651.03%1529295851.69%691137750.18%1974136419325921058529
11Eagles2110000069-31010000015-41100000054120.50061016001191097484795596195756794020433133.33%90100.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
12Firebirds220000001257110000007431100000051441.000122335001191097487695596195756621814546233.33%60100.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
13Griffins32100000161422200000013941010000035-240.66716294500119109748113955961957561083116838112.50%7442.86%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
14Gulls2010100035-21010000003-31000100032120.50035800119109748819559619575665281459600.00%7185.71%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
15IceHogs2110000067-1110000005321010000014-320.50061117001191097486295596195756661820543133.33%9188.89%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
16Marlies321000001165110000002022110000096340.66711213201119109748105955961957561033329675480.00%12191.67%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
17Monsters41100002914-5210000016512010000139-640.50091726001191097481289559619575614842381191417.14%19289.47%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
18Moose22000000954110000003211100000063341.00091726001191097485695596195756602016437114.29%8187.50%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
19Penguins42200000121022020000027-522000000103740.500122335001191097481449559619575611444188918422.22%80100.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
20Phantoms413000002225-320200000611-5211000001614220.250224062001191097481389559619575616636401128450.00%18477.78%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
21Reign2010001046-2100000103211010000014-320.50044800119109748789559619575670276386116.67%30100.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
22Roadrunners2110000067-1110000005321010000014-320.50061117001191097485595596195756761326435240.00%13376.92%11534300651.03%1529295851.69%691137750.18%1974136419325921058529
23Rocket330000001266220000009541100000031261.00012193100119109748123955961957567720197615533.33%60100.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
24Senators312000001394110000008172020000058-320.33313243700119109748111955961957561284326829111.11%12375.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
25Silver Knights21000100871110000005321000010034-130.75081321001191097485795596195756692614516116.67%7271.43%11534300651.03%1529295851.69%691137750.18%1974136419325921058529
26Sound Tigers42200000181532200000013672020000059-440.500183149001191097481529559619575613539328911218.18%15193.33%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
27Stars2010000169-31000000145-11010000024-210.25061117001191097487395596195756712620509222.22%10190.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
28Thunderbirds21100000981110000005321010000045-120.50091726001191097489195596195756741820605240.00%80100.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
29Wild21100000752110000007251010000003-320.5007111800119109748779559619575666171036200.00%50100.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
30Wolf Pack30200001715-81010000014-320100001611-510.167711180011910974896955961957561233122791218.33%10280.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
31Wranglers20101000810-21010000025-31000100065120.5008132100119109748769559619575665151664700.00%8450.00%01534300651.03%1529295851.69%691137750.18%1974136419325921058529
Total8236330322630729710412311011141621332941132202112145164-19900.54930754184801119109748290295596195756290385464921032365121.61%3015183.06%31534300651.03%1529295851.69%691137750.18%1974136419325921058529
_Since Last GM Reset8236330322630729710412311011141621332941132202112145164-19900.54930754184801119109748290295596195756290385464921032365121.61%3015183.06%31534300651.03%1529295851.69%691137750.18%1974136419325921058529
_Vs Conference34161102113120124-41710301012665791768011015467-13420.618120211331001191097481156955961957561213361267876931313.98%1262679.37%11534300651.03%1529295851.69%691137750.18%1974136419325921058529
_Vs Division1610500002565518800000133258825000012330-7220.688561001560011910974853095596195756565173140386391025.64%66789.39%11534300651.03%1529295851.69%691137750.18%1974136419325921058529

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8290L330754184829022903854649210301
All Games
GPWLOTWOTL SOWSOLGFGA
8236333226307297
Home Games
GPWLOTWOTL SOWSOLGFGA
4123111114162133
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4113222112145164
Last 10 Games
WLOTWOTL SOWSOL
540100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2365121.61%3015183.06%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
95596195756119109748
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1534300651.03%1529295851.69%691137750.18%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1974136419325921058529


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2023-10-114Senators1Wolves8BWBoxScore
5 - 2023-10-1432Wolves1Reign4ALBoxScore
6 - 2023-10-1534Wolves3Gulls2AWXBoxScore
8 - 2023-10-1747Wolves1Barracuda5ALBoxScore
10 - 2023-10-1960Wolves5Firebirds1AWBoxScore
12 - 2023-10-2176Wolves5Eagles4AWBoxScore
15 - 2023-10-2486Wolves2Crunch4ALBoxScore
17 - 2023-10-26101Firebirds4Wolves7BWBoxScore
18 - 2023-10-27112Barracuda2Wolves3BWXBoxScore
21 - 2023-10-30131Wolves8Phantoms9ALBoxScore
24 - 2023-11-02148Wolves1Wolf Pack5ALBoxScore
26 - 2023-11-04167Wolves3Sound Tigers5ALBoxScore
29 - 2023-11-07180Americans3Wolves2BLXXBoxScore
32 - 2023-11-10205Wolves8Checkers5AWBoxScore
33 - 2023-11-11214Wolves3Crunch2AWXXBoxScore
37 - 2023-11-15238Phantoms5Wolves4BLBoxScore
40 - 2023-11-18261Penguins3Wolves1BLBoxScore
44 - 2023-11-22279Condors2Wolves4BWBoxScore
46 - 2023-11-24303Crunch1Wolves6BWBoxScore
48 - 2023-11-26318Monsters4Wolves3BLXXBoxScore
50 - 2023-11-28328Wolves8Phantoms5AWBoxScore
52 - 2023-11-30341Sound Tigers4Wolves6BWBoxScore
54 - 2023-12-02360Americans2Wolves4BWBoxScore
56 - 2023-12-04376Wolves6Moose3AWBoxScore
58 - 2023-12-06391Wolves6Condors4AWBoxScore
59 - 2023-12-07401Wolves6Wranglers5AWXBoxScore
61 - 2023-12-09419Wolves3Comets6ALBoxScore
64 - 2023-12-12433Wolves3Senators4ALBoxScore
66 - 2023-12-14447Wolves3Griffins5ALBoxScore
67 - 2023-12-15455Admirals2Wolves3BWBoxScore
69 - 2023-12-17475Bears6Wolves3BLBoxScore
71 - 2023-12-19486Silver Knights3Wolves5BWBoxScore
73 - 2023-12-21503Wolves6Penguins1AWBoxScore
75 - 2023-12-23517Sound Tigers2Wolves7BWBoxScore
79 - 2023-12-27535Wolves4Admirals3AWBoxScore
80 - 2023-12-28542Rocket3Wolves5BWBoxScore
82 - 2023-12-30561Wolves3Marlies5ALBoxScore
85 - 2024-01-02575Wolves5Wolf Pack6ALXXBoxScore
88 - 2024-01-05603Wolves3Bears6ALBoxScore
89 - 2024-01-06609Thunderbirds3Wolves5BWBoxScore
94 - 2024-01-11639Gulls3Wolves0BLBoxScore
96 - 2024-01-13658Penguins4Wolves1BLBoxScore
98 - 2024-01-15675Reign2Wolves3BWXXBoxScore
102 - 2024-01-19702Griffins5Wolves7BWBoxScore
104 - 2024-01-21719Wild2Wolves7BWBoxScore
107 - 2024-01-24741Wolves4Bruins2AWBoxScore
108 - 2024-01-25746Devils3Wolves9BWBoxScore
110 - 2024-01-27764Roadrunners3Wolves5BWBoxScore
120 - 2024-02-06785Comets4Wolves3BLBoxScore
122 - 2024-02-08799Eagles5Wolves1BLBoxScore
124 - 2024-02-10811Devils3Wolves5BWBoxScore
127 - 2024-02-13830Wolves2Stars4ALBoxScore
130 - 2024-02-16849Wolves1Roadrunners4ALBoxScore
131 - 2024-02-17862Wolves3Silver Knights4ALXBoxScore
133 - 2024-02-19874IceHogs3Wolves5BWBoxScore
136 - 2024-02-22889Checkers4Wolves3BLXXBoxScore
138 - 2024-02-24909Stars5Wolves4BLXXBoxScore
139 - 2024-02-25920Wolves4Americans5ALBoxScore
141 - 2024-02-27932Wolves0Wild3ALBoxScore
143 - 2024-02-29942Wolves2Monsters3ALXXBoxScore
145 - 2024-03-02956Moose2Wolves3BWBoxScore
150 - 2024-03-07994Rocket2Wolves4BWBoxScore
152 - 2024-03-091011Wolves3Devils5ALBoxScore
153 - 2024-03-101024Wranglers5Wolves2BLBoxScore
155 - 2024-03-121032Wolf Pack4Wolves1BLBoxScore
157 - 2024-03-141046Checkers2Wolves5BWBoxScore
159 - 2024-03-161067Wolves6Marlies1AWBoxScore
160 - 2024-03-171077Wolves2Senators4ALBoxScore
162 - 2024-03-191087Wolves2Sound Tigers4ALBoxScore
164 - 2024-03-211099Phantoms6Wolves2BLBoxScore
165 - 2024-03-221109Wolves2Bears5ALBoxScore
167 - 2024-03-241127Marlies0Wolves2BWBoxScore
169 - 2024-03-261138Wolves4Penguins2AWBoxScore
171 - 2024-03-281150Griffins4Wolves6BWBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
173 - 2024-03-301173Wolves3Rocket1AWBoxScore
178 - 2024-04-041202Bruins7Wolves2BLBoxScore
179 - 2024-04-051212Bears4Wolves3BLXBoxScore
181 - 2024-04-071230Monsters1Wolves3BWBoxScore
183 - 2024-04-091239Wolves5Bruins3AWBoxScore
186 - 2024-04-121265Wolves4Thunderbirds5ALBoxScore
188 - 2024-04-141285Wolves1IceHogs4ALBoxScore
190 - 2024-04-161296Wolves1Monsters6ALBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price2515
Attendance81,00840,398
Attendance PCT98.79%98.53%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2961 - 98.70% 80,219$3,288,964$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
4,753,672$ 3,811,020$ 3,611,020$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
19,354$ 3,845,544$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 24,537$ 0$




Wolves Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Gage Quinney244811452264023716228399.65%55469319.24134457142123719653.60%10.96617
2Mathieu Olivier241861121984626897635281510.55%67455018.881317301211121513348.54%20.8727
3Drake Caggiula1528299181615015243167112.22%49330221.73142438109448188252.71%21.10313
4Sampo Ranta243597813736401662616329.34%43369315.20511165200005541.90%20.7402
5Matt Irwin1402293115122004192252588.53%244316522.611123341301233340.00%00.7300

Wolves Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Michael Hutchinson19310465180.9033.291125114461663570450.69252
2Erik Kallgren41231300.9193.0021630110813270010.72711
3Jiri Patera2713730.9013.33146000818170000.5006

Wolves Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
2382392806621289260294120150311113912514411913035101501351510128950879722961038283001969104495344283180160519892685721.27%2443984.02%11752310456.44%1591293354.24%732134254.55%2072145818435811050533
2022824724023333442648041261001112187133544121140122115713126110344618962421291061041230769811054101557277388261720212315523.81%2665280.45%71643301254.55%1543298851.64%751139153.99%2034143518785851048527
20238236330322630729710412311011141621332941132202112145164-199030754184801119109748290295596195756290385464921032365121.61%3015183.06%31534300651.03%1529295851.69%691137750.18%1974136419325921058529
Total Regular Season246122850111171094082111912369360533748839197123534906843452430223019401667260765344318260288979290530592925157850725371871611373516322.18%81114282.49%114929912254.03%4663887952.52%2174411052.90%608142575654175831571591
Playoff
20221376000004243-17430000024222633000001821-31442791210015121324361311281334441011810035544715.91%46882.61%025748652.88%24546552.69%10322346.19%34423634910818691
Total Playoff1376000004243-17430000024222633000001821-31442791210015121324361311281334441011810035544715.91%46882.61%025748652.88%24546552.69%10322346.19%34423634910818691

Wolves Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Kyle Turris1376132812235512.73%229022.33224900003153.62%00.9000
2Gage Quinney136612227275012.00%125919.98011400000145.74%00.9200
3Michael Chaput1375122628302825.00%221216.32112700002157.02%01.1300
4Nick Seeler13110116102116263.85%1232625.08011110001000.00%00.6700
5Matt Irwin122911-5163023306.67%2231826.51055200000000.00%00.6900

Wolves Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Michael Hutchinson137510.8942.9386000423950000.0000
2Erik Kallgren10000.9333.0020001150000.0000