Marlies

GP: 28 | W: 16 | L: 10 | OTL: 2 | P: 34
GF: 110 | GA: 87 | PP%: 22.22% | PK%: 79.01%
GM : Guillaume Jacob | Morale : 75 | Team Overall : 61
Next Games #461 vs Crunch

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Reid Schaefer (R)0X100.00865474609580756159626064616364075640
2Matt Savoie (R)0X100.00603786666782746573645960626163075620
3Viktor Neuchev (R)0X100.00643795607386775964615758626364075610
4Luke Tuch (R)0X100.00764173588575685652555459566365075600
5Luke Philp0XX100.00583790586774735666595754587072075600
6Roni Hirvonen (R)0X100.00573789616678775962585856606365075600
7Anthony Vincent0X100.00634266587280765759555654586770075590
8Corey Andonovski0X100.00674267577671815459555658546668075590
9Marc Johnstone98X100.00683877587174785659535554586971075590
10Jacob Doty0X100.00744565558364805260535456527274075590
11Jordan Martel0X100.00673794577681615552505653586769075590
12Tate Singleton0X100.00584359566576635562545153576769075560
13Michael Callahan0X100.00684085628180855830605761496668075620
14Ethan Prow6X100.00603794596968745730585354467375075600
15Chris Harpur0X100.00753981558464655430575056456971075590
16Colin Felix0X100.00795759557863705230535154456668075580
Scratches
1Chris Wagner0XXX100.00754374637379806265606463627677075640
2Andre Lee0X100.00794279629175796055595861576566075630
3Vasily Ponomarev (R)0X100.00593782676978806573636062676364075630
4Travis Howe0X100.00776952548660755351525056507173075580
5Alexander Petrovic0X100.00827174609280855830595762457475075630
6Matthew Robertson (R)0X100.00764274618985845930605662496466075620
7Ty Nelson (R)0X100.00553979646878736330615456476163075600
8Will Zmolek0X100.00753895578463645630555258456668075600
TEAM AVERAGE100.0069447859787575585057565854676907560
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Magnus Hellberg100.0076847896757476757476757488075680
2Jack Campbell100.0074817683737274737274737587075660
Scratches
TEAM AVERAGE100.007583779074737574737574758807567
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Woods63656869868061CAN571850,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Michael CallahanMarlies (TOR)D2811253611240515064222717.19%6070125.074482668000065300.00%000001.0300000032
2Matt SavoieMarlies (TOR)C281419338404120145341149.66%667724.1953820670003771057.54%78900000.9701000311
3Reid SchaeferMarlies (TOR)LW281219311028012784146311148.22%1868724.5616720660001752049.43%35200000.9001000233
4Roni HirvonenMarlies (TOR)C2812152741002580104336811.54%552518.752241955000012048.05%69300001.0300000211
5Viktor NeuchevMarlies (TOR)LW22101323-160374199247610.10%446521.1815611440001422151.16%8600000.9901000321
6Luke TuchMarlies (TOR)LW2871522134046467225469.72%341914.97000000001410047.62%4200001.0501000131
7Marc JohnstoneMarlies (TOR)RW28911201180163660175015.00%138013.5800001000000050.00%2600001.0500000020
8Luke PhilpMarlies (TOR)C/RW286142012004327318478.22%653118.9904410660001110059.65%5700000.7500000001
9Jacob DotyMarlies (TOR)C2871219895424854164812.96%840014.32101010001201153.00%50000000.9500001100
10Matthew RobertsonMarlies (TOR)D1931215716050324713186.38%3345023.690001849000139200.00%000100.6700000121
11Jordan MartelMarlies (TOR)RW287714120512869174310.14%653219.002131361000000041.46%4100000.5300000010
12Ethan ProwMarlies (TOR)D28211131010057263112266.45%4157920.682241358000160000.00%000000.4500000001
13Ty NelsonMarlies (TOR)D18391211003221319169.68%3336620.360221342000034000.00%000000.6500000000
14Chris HarpurMarlies (TOR)D252810012018201741011.76%2736414.560111400005100.00%000000.5500000010
15Colin FelixMarlies (TOR)D25167538072131081110.00%1836214.4800001000118100.00%000000.3900000001
16Andre LeeMarlies (TOR)LW52133401372081710.00%49218.41000011000070050.00%400000.6500000100
17Anthony VincentMarlies (TOR)RW25011-100475120.00%1572.3000015000010040.91%2200000.3500000000
18Corey AndonovskiMarlies (TOR)RW251010001513487.69%1783.14000000000000100.00%600000.2500000000
19Chris WagnerMarlies (TOR)C/LW/RW1000000324130.00%01414.0700013000020059.26%2700000.0000000000
20Tate SingletonMarlies (TOR)RW24000055000100.00%0100.44000020000000100.00%200000.0000100000
Team Total or Average46910919830711218010653698106429874410.24%275769616.411830481666120001150615252.47%264700100.8004101141913
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jack CampbellMarlies (TOR)1611410.9123.7396620606780100.00001611200
2Magnus HellbergMarlies (TOR)114610.9322.2766202253670100.75041116112
Team Total or Average27151020.9193.131629228510450200.75042727312


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alexander PetrovicD331992-03-03No211 Lbs6 ft5NoNoNo3UFAPro & Farm800,000$0$0$NoLink / NHL Link
Andre LeeLW252000-07-26No206 Lbs6 ft5NoNoNo1RFAPro & Farm800,000$0$0$NoLink / NHL Link
Anthony VincentRW281997-08-12No190 Lbs6 ft0NoNoNo1UFAPro & Farm750,000$0$0$NoLink / NHL Link
Chris HarpurD291996-09-13No201 Lbs6 ft3NoNoNo2UFAPro & Farm775,000$0$0$NoLink / NHL Link
Chris Wagner (1 Way Contract)C/LW/RW341991-05-27No192 Lbs6 ft0NoNoNo3UFAPro & Farm800,000$800,000$541,667$NoLink / NHL Link
Colin FelixD261999-01-07No203 Lbs6 ft1NoNoNo2RFAPro & Farm775,000$0$0$NoLink / NHL Link
Corey AndonovskiRW261999-03-26No195 Lbs6 ft1NoNoNo2RFAPro & Farm800,000$0$0$NoLink / NHL Link
Ethan ProwD321992-11-17No182 Lbs5 ft11NoNoNo1UFAPro & Farm750,000$0$0$NoLink / NHL Link
Jack Campbell (1 Way Contract)G331992-01-09No200 Lbs6 ft3NoNoNo3UFAPro & Farm999,999$999,999$677,083$NoLink / NHL Link
Jacob DotyC321993-06-19No212 Lbs6 ft2NoNoNo2UFAPro & Farm950,000$0$0$NoLink / NHL Link
Jordan MartelRW271998-02-24No194 Lbs6 ft1NoNoNo3RFAPro & Farm800,000$0$0$NoLink / NHL Link
Luke Philp (1 Way Contract)C/RW291995-11-06No181 Lbs5 ft10NoNoNo3UFAPro & Farm800,000$800,000$541,667$NoLink / NHL Link
Luke TuchLW232002-03-07Yes209 Lbs6 ft3NoNoNo3RFAPro & Farm950,000$0$0$NoLink / NHL Link
Magnus HellbergG341991-04-04No220 Lbs6 ft6NoNoNo3UFAPro & Farm999,999$0$0$NoLink / NHL Link
Marc JohnstoneRW291996-06-19No181 Lbs6 ft0NoNoNo3UFAPro & Farm800,000$0$0$NoLink / NHL Link
Matt SavoieC212004-01-01Yes179 Lbs5 ft9NoNoNo3RFAPro & Farm950,000$0$0$NoLink / NHL Link
Matthew RobertsonD242001-09-01Yes211 Lbs6 ft4NoNoNo2RFAPro & Farm800,000$0$0$NoLink / NHL Link
Michael CallahanD261999-09-23No199 Lbs6 ft2NoNoNo3RFAPro & Farm800,000$0$0$NoLink / NHL Link
Reid SchaeferLW222003-09-21Yes226 Lbs6 ft5NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Roni HirvonenC232002-01-10Yes178 Lbs5 ft10NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Tate SingletonRW271998-09-05No176 Lbs5 ft9NoNoNo3RFAPro & Farm800,000$0$0$NoLink / NHL Link
Travis HoweRW311994-02-10No198 Lbs6 ft4NoNoNo3UFAPro & Farm800,000$0$0$NoLink / NHL Link
Ty NelsonD212004-03-30Yes195 Lbs5 ft9NoNoNo3RFAPro & Farm950,000$0$0$NoLink / NHL Link
Vasily PonomarevC232002-03-13Yes180 Lbs5 ft10NoNoNo2RFAPro & Farm800,000$0$0$NoLink / NHL Link
Viktor NeuchevLW212003-10-25Yes165 Lbs6 ft2NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Will ZmolekD261999-04-17No205 Lbs6 ft3NoNoNo3RFAPro & Farm800,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2627.12196 Lbs6 ft12.42850,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Reid SchaeferMatt SavoieLuke Philp40122
2Viktor NeuchevRoni HirvonenJordan Martel30122
3Luke TuchJacob DotyMarc Johnstone20122
4Matt SavoieReid SchaeferCorey Andonovski10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Michael Callahan40122
2Ethan Prow30122
3Chris HarpurColin Felix20122
4Michael Callahan10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Reid SchaeferMatt SavoieLuke Philp60122
2Viktor NeuchevRoni HirvonenJordan Martel40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Michael Callahan60122
2Ethan Prow40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Reid SchaeferMatt Savoie60122
2Viktor NeuchevLuke Tuch40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Michael Callahan60122
2Ethan Prow40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Reid Schaefer60122Michael Callahan60122
2Matt Savoie40122Ethan Prow40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Reid SchaeferMatt Savoie60122
2Viktor NeuchevLuke Tuch40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Michael Callahan60122
2Ethan Prow40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Reid SchaeferMatt SavoieLuke PhilpMichael Callahan
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Reid SchaeferMatt SavoieLuke PhilpMichael Callahan
Extra Forwards
Normal PowerPlayPenalty Kill
Anthony Vincent, Tate Singleton, Jacob DotyAnthony Vincent, Tate SingletonJacob Doty
Extra Defensemen
Normal PowerPlayPenalty Kill
Chris Harpur, Colin Felix, Ethan ProwChris HarpurColin Felix, Ethan Prow
Penalty Shots
Reid Schaefer, Matt Savoie, Viktor Neuchev, Luke Tuch, Luke Philp
Goalie
#1 : Jack Campbell, #2 : Magnus Hellberg
Custom OT Lines Forwards
Reid Schaefer, Matt Savoie, Viktor Neuchev, Luke Tuch, Luke Philp, Roni Hirvonen, Roni Hirvonen, Jordan Martel, Jacob Doty, Marc Johnstone, Corey Andonovski
Custom OT Lines Defensemen
Michael Callahan, , Ethan Prow, , Chris Harpur


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2834W11102003101071106629318667802
All Games
GPWLOTWOTL SOWSOLGFGA
281310310111087
Home Games
GPWLOTWOTL SOWSOLGFGA
1610411007348
Visitor Games
GPWLOTWOTL SOWSOLGFGA
123620013739
Last 10 Games
WLOTWOTL SOWSOL
450001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
811822.22%811779.01%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
358366333185130263
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
562106552.77%608111554.53%22345249.34%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
666464668209357178


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2025-10-084Rocket1Marlies3WBoxScore
5 - 2025-10-1125Marlies2Griffins3LBoxScore
7 - 2025-10-1343Griffins0Marlies9WBoxScore
8 - 2025-10-1449Admirals0Marlies1WBoxScore
10 - 2025-10-1661Wolf Pack2Marlies1LBoxScore
12 - 2025-10-1879Firebirds4Marlies7WBoxScore
15 - 2025-10-2198Devils2Marlies8WBoxScore
18 - 2025-10-24125Marlies6Americans5WXBoxScore
19 - 2025-10-25132Americans4Marlies5WXBoxScore
22 - 2025-10-28151Wranglers1Marlies4WBoxScore
23 - 2025-10-29166Marlies4Monsters3WXBoxScore
26 - 2025-11-01188Marlies4Phantoms2WBoxScore
28 - 2025-11-03199Penguins5Marlies4LXBoxScore
30 - 2025-11-05213Roadrunners4Marlies5WBoxScore
33 - 2025-11-08234Bruins5Marlies2LBoxScore
34 - 2025-11-09246Wolves6Marlies4LBoxScore
36 - 2025-11-11256Marlies3Bruins7LBoxScore
38 - 2025-11-13269Reign2Marlies4WBoxScore
40 - 2025-11-15291Marlies4IceHogs2WBoxScore
43 - 2025-11-18307Thunderbirds4Marlies8WBoxScore
45 - 2025-11-20319Monsters4Marlies3LBoxScore
47 - 2025-11-22337Marlies4Rocket5LBoxScore
51 - 2025-11-26369Marlies1Monsters2LXXBoxScore
53 - 2025-11-28386Marlies2Bears3LBoxScore
54 - 2025-11-29396Marlies1Penguins2LBoxScore
57 - 2025-12-02415Marlies5Checkers2WBoxScore
59 - 2025-12-04432Marlies1Wolves3LBoxScore
61 - 2025-12-06444Rocket4Marlies5WBoxScore
63 - 2025-12-08461Crunch-Marlies-
66 - 2025-12-11480Barracuda-Marlies-
68 - 2025-12-13499Condors-Marlies-
71 - 2025-12-16520IceHogs-Marlies-
73 - 2025-12-18538Marlies-Bears-
75 - 2025-12-20558Marlies-Admirals-
76 - 2025-12-21568Marlies-Stars-
78 - 2025-12-23575Penguins-Marlies-
82 - 2025-12-27590Senators-Marlies-
83 - 2025-12-28603Marlies-Griffins-
85 - 2025-12-30617Devils-Marlies-
87 - 2026-01-01634Moose-Marlies-
89 - 2026-01-03651Marlies-Sound Tigers-
92 - 2026-01-06672Checkers-Marlies-
94 - 2026-01-08686Marlies-Phantoms-
96 - 2026-01-10702Comets-Marlies-
98 - 2026-01-12723Marlies-Eagles-
99 - 2026-01-13733Marlies-Roadrunners-
101 - 2026-01-15748Marlies-Silver Knights-
103 - 2026-01-17762Marlies-Moose-
105 - 2026-01-19774Wild-Marlies-
107 - 2026-01-21788Griffins-Marlies-
109 - 2026-01-23802Silver Knights-Marlies-
111 - 2026-01-25819Eagles-Marlies-
113 - 2026-01-27831Americans-Marlies-
115 - 2026-01-29857Marlies-Firebirds-
117 - 2026-01-31869Marlies-Comets-
119 - 2026-02-02885Marlies-Wranglers-
120 - 2026-02-03891Marlies-Condors-
142 - 2026-02-25912Marlies-Crunch-
143 - 2026-02-26921Marlies-Checkers-
145 - 2026-02-28940Senators-Marlies-
147 - 2026-03-02954Phantoms-Marlies-
149 - 2026-03-04971Marlies-Devils-
150 - 2026-03-05975Marlies-Wolf Pack-
152 - 2026-03-07994Crunch-Marlies-
155 - 2026-03-101014Marlies-Rocket-
157 - 2026-03-121029Gulls-Marlies-
159 - 2026-03-141047Marlies-Americans-
160 - 2026-03-151060Marlies-Wild-
162 - 2026-03-171068Sound Tigers-Marlies-
165 - 2026-03-201094Wolves-Marlies-
166 - 2026-03-211106Marlies-Senators-
169 - 2026-03-241120Marlies-Bruins-
170 - 2026-03-251136Wolf Pack-Marlies-
Trade Deadline --- Trades can’t be done after this day is simulated!
173 - 2026-03-281160Marlies-Thunderbirds-
175 - 2026-03-301176Marlies-Gulls-
178 - 2026-04-021202Marlies-Barracuda-
180 - 2026-04-041217Marlies-Reign-
184 - 2026-04-081245Bears-Marlies-
185 - 2026-04-091252Marlies-Sound Tigers-
187 - 2026-04-111270Checkers-Marlies-
189 - 2026-04-131285Stars-Marlies-
191 - 2026-04-151304Marlies-Senators-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price4025
Attendance21,53710,653
Attendance PCT67.30%66.58%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
-6 2012 - 67.06% 88,110$1,409,758$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
902,482$ 1,950,000$ 1,950,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 626,344$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
-528,659$ 130 14,583$ 1,895,790$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
202482234207145264310-4641141706013140143-34192501132124167-43742644777410181908216268384895083679293882360819442604818.46%2746675.91%41471285051.61%1630307553.01%684138249.49%1855125320536261072522
202528131003101110872316104011007348251236020013739-2341102003100251302631071358366333181066293186678811822.22%811779.01%0562106552.77%608111554.53%22345249.34%666464668209357178
Total Regular Season1103652010246374397-23572421071132131912253123103133161206-45108374677105103132120108193754120613161169974004111679426223416619.35%3558376.62%42033391551.93%2238419053.41%907183449.45%2521171827228351429700