Americans

GP: 31 | W: 19 | L: 8 | OTL: 4 | P: 42
GF: 117 | GA: 84 | PP%: 19.23% | PK%: 81.25%
GM : Jean-Nicolas Bleau | Morale : 75 | Team Overall : 61
Next Games #513 vs Firebirds

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Sam Colangelo (R)0X100.00733991728387746866636962716465075660
2Alex Turcotte (R)0X100.00643690717079836772686263696466075650
3Drake Caggiula0XXX100.00683972656783816269646163627273075640
4Samuel Fagemo (R)0X100.00643785657489836458616663676568075640
5Amadeus Lombardi (R)0X100.00633693656378816471636261656364075630
6Nick Abruzzese (R)0X100.00603693666980876471635857606668075630
7Landon Slaggert (R)0X100.00633785667079766458625965616364075630
8Noah Philp0X100.00723986638385726265606163626769075630
9Arshdeep Bains (R)0X100.00643785637177846270645961626465075620
10Kyle McDonald (R)0X100.00824284569173795556535758566365075610
11Joel Hanley0X100.00704383677087776330685665517475075640
12Daemon Hunt (R)0X100.00673887637874836230615865496365075630
13Luke Prokop (R)0X100.00885192549765665330555159456365075600
14Carson Lambos (R)0X100.00684075577767865630555458466264075590
15Christian Kyrou (R)0X100.00573692586668775730595556476264075590
Scratches
1Brandon Gignac (R)0XX100.00613878637084756168605864626870075620
2Hunter Haight (R)0X89.49563786606587725963566155596263075600
3Jack Malone (R)0X100.00663795567668705351525554576567075590
4Justin Ertel (R)0X100.00704077587965635661595457556264075590
5Blake McLaughlin (R)0XX100.00553689596468675760585354566567075580
6David Goyette (R)0X100.00563788586569705663575554586163075580
7Gavin Brindley (R)0X100.00553686596479695862555457566163075580
8Filip Kral (R)0X100.00713984588071725730615559476668075610
9Gavin White (R)0X100.00653792557468775430565253466365075580
TEAM AVERAGE99.5666388662747676605460585957656607561
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Sebastian Cossa (R)100.0077878398767577767577766369075670
2Will Cranley (R)100.0058706683575658575658576369075560
Scratches
TEAM AVERAGE100.006879759167666867666867636907562
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Neil Graham63677372605687CAN391550,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Alex TurcotteAmericans (BUF)C311325381112041112155341118.39%365321.0838113095000012054.33%88900011.1600000501
2Landon SlaggertAmericans (BUF)LW31181331101005257132367313.64%765421.1331420930000121153.13%6400000.9500000034
3Samuel FagemoAmericans (BUF)RW311118291460454413138698.40%250116.163252281000001252.08%4800001.1611000111
4Joel HanleyAmericans (BUF)D3181927143115694968153911.76%4173023.5757123784000061100.00%000000.7400102023
5Sam ColangeloAmericans (BUF)RW27720271080695311639866.03%256220.851341678000002158.14%4300000.9611000152
6Amadeus LombardiAmericans (BUF)C309172680036959328719.68%551017.021451777000081157.77%59200001.0200000311
7Drake CaggiulaAmericans (BUF)C/LW/RW3191120680583110821778.33%345214.612352281000010046.43%8400000.8800000210
8Arshdeep BainsAmericans (BUF)LW31910191580504286187410.47%947615.3800000000003151.72%2900000.8000000123
9Brandon GignacAmericans (BUF)C/LW269817940193663133714.29%834213.18000000001322146.94%9800000.9900000020
10Filip KralAmericans (BUF)D30313164160502429122610.34%2254118.04268148100008100.00%100000.5900000000
11Nick AbruzzeseAmericans (BUF)C314121610008485524637.27%333610.8600001000001155.01%44900000.9500000010
12Daemon HuntAmericans (BUF)D31210121116048265318373.77%5074524.060222287000163000.00%000000.3200000101
13Noah PhilpAmericans (BUF)C315510-48023847020467.14%1034611.16000281016891159.87%47600000.5800000000
14Carson LambosAmericans (BUF)D31077124051193612180.00%3959919.320221587000051000.00%000000.2300000000
15Kyle McDonaldAmericans (BUF)RW26437-51352373293112.50%32599.97000100002600040.54%3700000.5400001000
16Luke ProkopAmericans (BUF)D311561430107112217134.76%4852717.0200000000022000.00%000000.2300101012
17Blake McLaughlinAmericans (BUF)LW/RW15325140361561220.00%21197.97000000000171025.00%400000.8400000000
18Christian KyrouAmericans (BUF)D160553207156460.00%1730719.20000030110270024.24%3300000.3300000000
19Joey KeaneSabresD1114512007673614.29%1420418.6200016000022100.00%000000.4900000000
20Hunter HaightAmericans (BUF)C7000-8000211320.00%2628.9200000000030071.43%700000.0000000000
Team Total or Average5291162073231362003073076812873608979.01%290893616.892038582198701121048518955.01%285400010.7222204141918
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Sebastian CossaAmericans (BUF)3018730.9162.57173143748830100.6673292302
2Will CranleyAmericans (BUF)41110.8884.171440010890000.0000229000
Team Total or Average3419840.9142.69187643849720100.66733131302


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alex TurcotteC242001-02-26Yes185 Lbs5 ft11NoNoNo1RFAPro & Farm1,170,000$0$0$NoLink / NHL Link
Amadeus LombardiC222003-06-05Yes165 Lbs5 ft10NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Arshdeep BainsLW242001-01-09Yes184 Lbs6 ft0NoNoNo1RFAPro & Farm950,000$0$0$NoLink / NHL Link
Blake McLaughlinLW/RW252000-02-14Yes160 Lbs5 ft11NoNoNo1RFAPro & Farm950,000$0$0$NoLink / NHL Link
Brandon GignacC/LW271997-11-07Yes170 Lbs5 ft11NoNoNo2RFAPro & Farm751,000$0$0$NoLink / NHL Link
Carson LambosD222003-01-14Yes197 Lbs6 ft1NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Christian KyrouD222003-09-16Yes166 Lbs5 ft11NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Daemon HuntD232002-05-12Yes201 Lbs6 ft1NoNoNo1RFAPro & Farm950,000$0$0$NoLink / NHL Link
David GoyetteC212004-03-27Yes172 Lbs5 ft10NoNoNo3RFAPro & Farm950,000$0$0$NoLink / NHL Link
Drake CaggiulaC/LW/RW311994-06-20No179 Lbs5 ft10NoNoNo1UFAPro & Farm750,000$0$0$NoLink / NHL Link
Filip KralD251999-10-20Yes198 Lbs6 ft2NoNoNo3RFAPro & Farm950,000$0$0$NoLink / NHL Link
Gavin BrindleyC212004-10-05Yes175 Lbs5 ft9NoNoNo3RFAPro & Farm950,000$0$0$NoLink / NHL Link
Gavin WhiteD222002-11-12Yes196 Lbs6 ft0NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Hunter Haight (Out of Payroll)C212004-04-04Yes173 Lbs5 ft10NoNoNo3RFAPro & Farm950,000$0$0$YesLink / NHL Link
Jack MaloneRW242000-10-13Yes191 Lbs6 ft1NoNoNo3RFAPro & Farm950,000$0$0$NoLink / NHL Link
Joel HanleyD341991-06-08No186 Lbs5 ft11NoNoNo1UFAPro & Farm840,000$0$0$NoLink / NHL Link
Justin ErtelLW222003-05-27Yes192 Lbs6 ft2NoNoNo3RFAPro & Farm950,000$0$0$NoLink / NHL Link
Kyle McDonaldRW232002-02-05Yes221 Lbs6 ft4NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Landon SlaggertLW232002-06-25Yes180 Lbs6 ft0NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Luke ProkopD232002-06-05Yes224 Lbs6 ft6NoNoNo3RFAPro & Farm950,000$0$0$NoLink / NHL Link
Nick AbruzzeseC261999-06-04Yes183 Lbs5 ft11NoNoNo1RFAPro & Farm950,000$0$0$NoLink / NHL Link
Noah PhilpC271998-08-31No198 Lbs6 ft3NoNoNo2RFAPro & Farm871,000$0$0$NoLink / NHL Link
Sam ColangeloRW232001-12-26Yes211 Lbs6 ft2NoNoNo3RFAPro & Farm950,000$0$0$NoLink / NHL Link
Samuel FagemoRW252000-03-14Yes200 Lbs6 ft0NoNoNo2RFAPro & Farm956,700$0$0$NoLink / NHL Link
Sebastian CossaG222002-11-21Yes229 Lbs6 ft6NoNoNo1RFAPro & Farm950,000$0$0$NoLink / NHL Link
Will CranleyG232002-02-26Yes183 Lbs6 ft4NoNoNo3RFAPro & Farm950,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2624.04189 Lbs6 ft12.04936,104$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Landon SlaggertAlex TurcotteSam Colangelo40122
2Arshdeep BainsSamuel Fagemo30122
3Amadeus LombardiNick AbruzzeseDrake Caggiula20122
4Noah PhilpKyle McDonald10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Daemon HuntJoel Hanley40122
2Christian KyrouLuke Prokop30122
3Carson Lambos20122
4Carson Lambos10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Landon SlaggertAlex TurcotteSam Colangelo60122
2Drake CaggiulaAmadeus LombardiSamuel Fagemo40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Daemon HuntCarson Lambos60122
2Joel Hanley40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Noah Philp60122
2Kyle McDonald40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Daemon HuntJoel Hanley60122
2Christian KyrouCarson Lambos40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Alex Turcotte60122Luke ProkopChristian Kyrou60122
2Amadeus Lombardi40122Carson Lambos40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Nick AbruzzeseArshdeep Bains60122
2Noah PhilpDrake Caggiula40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Luke ProkopChristian Kyrou60122
2Carson Lambos40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Landon SlaggertAlex TurcotteSam ColangeloDaemon HuntJoel Hanley
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Amadeus LombardiDrake CaggiulaLuke Prokop
Extra Forwards
Normal PowerPlayPenalty Kill
, Amadeus Lombardi, Drake CaggiulaNoah Philp, Nick AbruzzeseKyle McDonald
Extra Defensemen
Normal PowerPlayPenalty Kill
Christian Kyrou, Luke Prokop, Carson LambosLuke Prokop,
Penalty Shots
Sam Colangelo, Samuel Fagemo, Alex Turcotte, , Amadeus Lombardi
Goalie
#1 : Sebastian Cossa, #2 : Will Cranley
Custom OT Lines Forwards
Landon Slaggert, Drake Caggiula, , Sam Colangelo, Samuel Fagemo, Alex Turcotte, Alex Turcotte, Amadeus Lombardi, Nick Abruzzese, Noah Philp, Kyle McDonald
Custom OT Lines Defensemen
Daemon Hunt, Joel Hanley, Luke Prokop, , Christian Kyrou


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3142L1117207324129197229220473103
All Games
GPWLOTWOTL SOWSOLGFGA
31178141011784
Home Games
GPWLOTWOTL SOWSOLGFGA
168412106839
Visitor Games
GPWLOTWOTL SOWSOLGFGA
159402004945
Last 10 Games
WLOTWOTL SOWSOL
630100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1042019.23%801581.25%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
449406424144436353
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
715127456.12%585105555.45%27751553.79%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
810580668218398206


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2025-10-099Wolf Pack4Americans8WBoxScore
5 - 2025-10-1124Americans3Bruins4LXBoxScore
7 - 2025-10-1339Eagles1Americans4WBoxScore
9 - 2025-10-1557Senators1Americans2WXBoxScore
12 - 2025-10-1876Checkers1Americans6WBoxScore
14 - 2025-10-2095Americans2Rocket1WBoxScore
16 - 2025-10-22109Griffins0Americans7WBoxScore
18 - 2025-10-24125Marlies6Americans5LXBoxScore
19 - 2025-10-25132Americans4Marlies5LXBoxScore
22 - 2025-10-28153Monsters5Americans3LBoxScore
24 - 2025-10-30167Americans5Bruins4WBoxScore
26 - 2025-11-01186Bears0Americans9WBoxScore
29 - 2025-11-04203Roadrunners3Americans2LBoxScore
31 - 2025-11-06219Thunderbirds3Americans9WBoxScore
33 - 2025-11-08238Americans0Wolves7LBoxScore
37 - 2025-11-12267Americans3Roadrunners2WBoxScore
38 - 2025-11-13275Americans5Eagles2WBoxScore
40 - 2025-11-15287Americans8Griffins2WBoxScore
42 - 2025-11-17302Condors2Americans3WXXBoxScore
44 - 2025-11-19316Wranglers3Americans0LBoxScore
46 - 2025-11-21331IceHogs4Americans2LBoxScore
48 - 2025-11-23347Wolves0Americans2WBoxScore
51 - 2025-11-26366Americans4Penguins3WBoxScore
53 - 2025-11-28379Devils3Americans2LXBoxScore
54 - 2025-11-29399Americans1Wild2LBoxScore
56 - 2025-12-01408Moose3Americans4WBoxScore
58 - 2025-12-03423Americans1Phantoms3LBoxScore
60 - 2025-12-05437Americans5Moose2WBoxScore
63 - 2025-12-08463Americans4Wranglers2WBoxScore
64 - 2025-12-09474Americans3Condors2WBoxScore
66 - 2025-12-11492Americans1Comets4LBoxScore
69 - 2025-12-14513Americans-Firebirds-
73 - 2025-12-18540Phantoms-Americans-
75 - 2025-12-20553Sound Tigers-Americans-
76 - 2025-12-21565Americans-Devils-
78 - 2025-12-23579Americans-Senators-
82 - 2025-12-27589Bruins-Americans-
84 - 2025-12-29610Americans-Thunderbirds-
86 - 2025-12-31628Americans-Stars-
89 - 2026-01-03646Americans-Monsters-
92 - 2026-01-06667Comets-Americans-
94 - 2026-01-08685Americans-Wolf Pack-
96 - 2026-01-10701Gulls-Americans-
98 - 2026-01-12716Checkers-Americans-
100 - 2026-01-14736Phantoms-Americans-
101 - 2026-01-15740Rocket-Americans-
103 - 2026-01-17754Wild-Americans-
105 - 2026-01-19770Americans-Wolves-
106 - 2026-01-20784Americans-Admirals-
108 - 2026-01-22795Americans-Rocket-
110 - 2026-01-24810Americans-Sound Tigers-
113 - 2026-01-27831Americans-Marlies-
115 - 2026-01-29844Reign-Americans-
117 - 2026-01-31865Rocket-Americans-
119 - 2026-02-02876Americans-Checkers-
120 - 2026-02-03889Americans-Crunch-
122 - 2026-02-05903Penguins-Americans-
142 - 2026-02-25910Americans-Devils-
144 - 2026-02-27930Americans-Checkers-
145 - 2026-02-28942Americans-Crunch-
148 - 2026-03-03960Silver Knights-Americans-
150 - 2026-03-05977Americans-Penguins-
152 - 2026-03-07992Admirals-Americans-
153 - 2026-03-081003Crunch-Americans-
155 - 2026-03-101013Barracuda-Americans-
157 - 2026-03-121028Bears-Americans-
159 - 2026-03-141047Marlies-Americans-
162 - 2026-03-171075Americans-Silver Knights-
164 - 2026-03-191092Americans-Barracuda-
166 - 2026-03-211102Americans-Reign-
167 - 2026-03-221117Americans-Gulls-
170 - 2026-03-251135Bruins-Americans-
172 - 2026-03-271150Griffins-Americans-
Trade Deadline --- Trades can’t be done after this day is simulated!
173 - 2026-03-281159Firebirds-Americans-
176 - 2026-03-311179Sound Tigers-Americans-
178 - 2026-04-021191Americans-Senators-
180 - 2026-04-041213Americans-Bears-
182 - 2026-04-061229Crunch-Americans-
184 - 2026-04-081244Americans-Wolf Pack-
185 - 2026-04-091248Monsters-Americans-
189 - 2026-04-131288Americans-IceHogs-
191 - 2026-04-151301Stars-Americans-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price2515
Attendance31,59415,982
Attendance PCT98.73%99.89%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
-6 2974 - 99.12% 80,436$1,286,976$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,071,846$ 2,433,870$ 2,338,870$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 874,866$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
-482,616$ 124 15,541$ 1,927,084$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
20248236300852129226923412212052001481133541141803321144156-12982925308223397909510279389692293455259475444618332796623.66%1834277.05%11438299747.98%1370285747.95%644136247.28%2038143018565901063542
20253117801410117843316840121068392915940020049454421172073240344363531291449406424149722922047311042019.23%801581.25%1715127456.12%585105555.45%27751553.79%810580668218398206
Total Regular Season11353380993140935356573016064102161526456232203521193201-8140409737114636141126130134084134513281358693566104665025643838622.45%2635778.33%22153427150.41%1955391249.97%921187749.07%2848201025258091462748
Playoff
202425141100000797181156000003731614950000042402287914522410273020280727227424417827216160570842023.81%71987.32%140587246.44%42093245.06%16839942.11%601411587187331165
Total Playoff25141100000797181156000003731614950000042402287914522410273020280727227424417827216160570842023.81%71987.32%140587246.44%42093245.06%16839942.11%601411587187331165