Americans

GP: 7 | W: 4 | L: 3 | OTL: 0 | P: 8
GF: 22 | GA: 22 | PP%: 18.52% | PK%: 88.00%
GM : Jean-Nicolas Bleau | Morale : 75 | Team Overall : 63
Next Games #57 vs Griffins

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Player Name
#
C
L
R
D
CON
CK
FG
DI
SK
ST
EN
DU
PH
FO
PA
SC
DF
PS
EX
LD
PO
MO
OV
TA
SP
1Alexandre Texier (R) (C)0X100.00673685737886746761696580756668075680
2Emil Bemstrom (R)0XX100.00643894697379867073676862706669075660
3Fredrik Olofsson0X100.00693892627875876474635968616769075640
4Samuel Fagemo (R)0X100.00643791667487836559606761666568075640
5Alex Turcotte (R) (A)0X100.00603785666977766571636062666465075630
6Nick Abruzzese (R)0X100.00603691656979876364665758636567075630
7William Bitten0X100.00703784647083856360655857606668075630
8Arshdeep Bains (R)0X100.00653785637178856267645759616465075620
9Kyle McDonald (R)0X100.00824188609181705857566062596264075620
10Alex Whelan (R)0X100.00683890587785745560565754596769075600
11Gabriel Fortier (R)0X100.00633690596877845862565760556466075600
12Dylan Coghlan (R)0X100.00714083668280756430675962516668075640
13Joel Hanley0X100.00704379677082726630655362507375075630
14Daemon Hunt (R)0X100.00673889637874826130625665496264075620
15Will Butcher0X100.00593693646869795830615659486971075610
16Christian Kyrou (R)0X100.00573788636668706230605553476163075600
17Carson Lambos (R)0X100.00684172607766725930565458456163075590
Scratches
1Landon Slaggert (R)0X100.00653492647078626350625666596162075620
2Adam Raska (R)0X100.00726657606672825953585961566365075600
3Amadeus Lombardi (R)0X100.00633594586371735769615354566163075590
4Blake McLaughlin (R)0XX100.00553784536465695154525055576466075560
5Oliver Kylington (R)0X100.00674386727186656930706567556867075660
6Ben Hutton (A)0X100.00634090678487736530726264547571075660
7Gavin White (R)0X100.00653889567470685430575053456264075580
TEAM AVERAGE100.0066398663737776625062586157656707562
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Goalie Name
CON
SK
DU
EN
SZ
AG
RB
SC
HS
RT
PH
PS
EX
LD
PO
MO
OV
TA
SP
1Calvin Pickard100.0081827779807981807981807486075690
2Sebastian Cossa (R)100.0071787498706971706971706267075640
Scratches
1Zach Sawchenko (R)100.0072797574717072717072716777075640
TEAM AVERAGE100.007580758474737574737574687707566
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Neil Graham65687478585588CAN382550,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Player Name
Team Name
POS
GP
G
A
P
+/-
PIM
PIM5
HIT
HTT
SHT
OSB
OSM
SHT%
SB
MP
AMG
PPG
PPA
PPP
PPS
PPM
PKG
PKA
PKP
PKS
PKM
GW
GT
FO%
FOT
GA
TA
EG
HT
P/20
PSG
PSS
FW
FL
FT
S1
S2
S3
1Emil BemstromAmericans (BUF)LW/RW7437-2409172772514.81%216423.432025200000241054.00%5000000.8500000110
2Dylan CoghlanAmericans (BUF)D715638016792611.11%1316022.87101624000020000.00%000000.7500000011
3Fredrik OlofssonAmericans (BUF)LW7246-22011112021610.00%013819.85022320000011043.75%1600000.8600000000
4Oliver KylingtonAmericans (BUF)D7156-42099176125.88%913819.80011915000013000.00%000000.8700000000
5Alexandre TexierAmericans (BUF)C7235-24011181972210.53%312217.4500000000040146.20%15800000.8200000001
6Samuel FagemoAmericans (BUF)RW7145-120117208215.00%214220.340224270001280042.86%1400000.7000000100
7Arshdeep BainsAmericans (BUF)LW7044220106122160.00%211817.00000327000040050.00%600000.6700000000
8Alex TurcotteAmericans (BUF)C7404-1207102191219.05%111316.28101427000001049.72%17700000.7000000002
9Nick AbruzzeseAmericans (BUF)C73142405141261425.00%110515.13101421000000148.12%13300000.7600000000
10Joel HanleyAmericans (BUF)D7033175231215780.00%1013519.29011723000013000.00%000000.4400010000
11Will ButcherAmericans (BUF)D703312051340100.00%1012918.4302242400004000.00%000000.4600000000
12Alex WhelanAmericans (BUF)RW72022209271928.57%18612.3100001000000157.14%700000.4600000100
13Carson LambosAmericans (BUF)D60221601421230.00%711819.7601100000015000.00%000000.3400000000
14Kyle McDonaldAmericans (BUF)RW7112-1406111229.09%1578.25000000000160044.44%900000.6900000000
15William BittenAmericans (BUF)C7022-26015815190.00%012618.0800000000000050.00%5200000.3200000000
16Daemon HuntAmericans (BUF)D7011-600978130.00%1215021.4800049000021000.00%000000.1300000000
17Gabriel FortierAmericans (BUF)C7101-1002122550.00%0507.25000000000111025.00%1200000.3900000000
18Christian KyrouAmericans (BUF)D7000000011000.00%040.660001000002000.00%000000.0000000000
19Ben HuttonAmericans (BUF)D1000000001000.00%11313.800000000000000.00%000000.0000000000
Team Total or Average126224163-10575172146222651939.91%75207716.4959145424600011814348.11%63400000.6100010324
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
#
Goalie Name
Team Name
GP
W
L
OTL
PCT
GAA
MP
PIM
SO
GA
SA
SAR
A
EG
PS %
PSA
ST
BG
S1
S2
S3
1Calvin PickardAmericans (BUF)74210.9073.1142400222360000.000070000
Team Total or Average74210.9073.1142400222360000.000070000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name
Team Name
POS
Age
Birthday
Rookie
Weight
Height
No Trade
Available For Trade
Force Waivers
Contract
Status
Type
Current Salary
Salary Cap
Salary Cap Remaining
Exclude from Salary Cap
Link
Adam RaskaRW232001-09-25Yes178 Lbs5 ft10NoNoNo1RFAPro & Farm950,000$0$0$NoLink / NHL Link
Alex TurcotteC232001-02-26Yes185 Lbs5 ft11NoNoNo1RFAPro & Farm950,000$0$0$NoLink / NHL Link
Alex WhelanRW271997-07-20Yes212 Lbs6 ft0NoNoNo1RFAPro & Farm850,000$0$0$NoLink / NHL Link
Alexandre TexierC251999-09-13Yes201 Lbs6 ft1NoNoNo3RFAPro & Farm950,000$0$0$NoLink
Amadeus LombardiC212003-06-05Yes165 Lbs5 ft10NoNoNo3RFAPro & Farm950,000$0$0$No
Arshdeep BainsLW232001-01-09Yes184 Lbs6 ft0NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Ben HuttonD311993-04-20No201 Lbs6 ft3NoNoYes1UFAPro & Farm750,000$0$0$NoLink / NHL Link
Blake McLaughlinLW/RW242000-02-14Yes160 Lbs5 ft11NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Calvin PickardG321992-04-15No206 Lbs6 ft1NoNoYes2UFAPro & Farm800,000$0$0$NoLink / NHL Link
Carson LambosD212003-01-14Yes197 Lbs6 ft1NoNoNo3RFAPro & Farm950,000$0$0$No
Christian KyrouD212003-09-16Yes166 Lbs5 ft11NoNoNo3RFAPro & Farm950,000$0$0$No
Daemon HuntD222002-05-12Yes201 Lbs6 ft1NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Dylan CoghlanD261998-02-19Yes208 Lbs6 ft2NoNoNo1RFAPro & Farm750,000$0$0$NoLink / NHL Link
Emil BemstromLW/RW251999-06-01Yes195 Lbs6 ft0NoNoNo1RFAPro & Farm800,000$0$0$NoLink / NHL Link
Fredrik OlofssonLW281996-05-27No190 Lbs6 ft2NoNoNo2UFAPro & Farm920,000$0$0$NoLink / NHL Link
Gabriel FortierC242000-02-06Yes177 Lbs5 ft10NoNoNo1RFAPro & Farm800,000$0$0$NoLink / NHL Link
Gavin WhiteD212002-11-12Yes196 Lbs6 ft0NoNoNo3RFAPro & Farm950,000$0$0$No
Joel HanleyD331991-06-08No186 Lbs5 ft11NoNoNo2UFAPro & Farm840,000$0$0$NoLink / NHL Link
Kyle McDonaldRW222002-02-05Yes221 Lbs6 ft4NoNoNo3RFAPro & Farm950,000$0$0$No
Landon SlaggertLW222002-06-25Yes180 Lbs6 ft0NoNoNo3RFAPro & Farm950,000$0$0$No
Nick AbruzzeseC251999-06-04Yes183 Lbs5 ft11NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Oliver KylingtonD271997-05-19Yes183 Lbs6 ft0NoNoNo3RFAPro & Farm950,000$0$0$NoLink
Samuel FagemoRW242000-03-14Yes200 Lbs6 ft0NoNoNo3RFAPro & Farm956,700$0$0$NoLink / NHL Link
Sebastian CossaG212002-11-21Yes229 Lbs6 ft6NoNoNo2RFAPro & Farm950,000$0$0$NoLink / NHL Link
Will ButcherD291995-01-06No190 Lbs5 ft10NoNoNo2UFAPro & Farm875,000$0$0$NoLink / NHL Link
William BittenC261998-07-10No180 Lbs5 ft11NoNoNo1RFAPro & Farm805,000$0$0$NoLink / NHL Link
Zach SawchenkoG261997-12-30Yes185 Lbs6 ft1NoNoNo1RFAPro & Farm852,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2724.89191 Lbs6 ft02.00898,100$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Fredrik OlofssonAlexandre TexierEmil Bemstrom40122
2William BittenAlex TurcotteSamuel Fagemo30122
3Arshdeep BainsNick AbruzzeseAlex Whelan20122
4Gabriel FortierWilliam BittenKyle McDonald10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Daemon Hunt35122
2Carson LambosDylan Coghlan35122
3Joel HanleyWill Butcher20122
4Joel HanleyWill Butcher10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Arshdeep BainsAlex TurcotteSamuel Fagemo60122
2Fredrik OlofssonNick AbruzzeseEmil Bemstrom40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Dylan Coghlan60122
2Will ButcherJoel Hanley40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Emil BemstromSamuel Fagemo60122
2Gabriel FortierKyle McDonald40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Daemon HuntDylan Coghlan60122
2Carson Lambos40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Gabriel Fortier60122Will Butcher60122
2William Bitten40122Dylan CoghlanDaemon Hunt40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1William BittenArshdeep Bains60122
2Samuel FagemoEmil Bemstrom40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Daemon HuntWill Butcher60122
2Dylan CoghlanCarson Lambos40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Emil BemstromAlex TurcotteSamuel FagemoDylan Coghlan
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Arshdeep BainsAlexandre TexierKyle McDonaldDaemon HuntJoel Hanley
Extra Forwards
Normal PowerPlayPenalty Kill
Emil Bemstrom, Arshdeep Bains, Samuel FagemoEmil Bemstrom, Alex WhelanKyle McDonald
Extra Defensemen
Normal PowerPlayPenalty Kill
Carson Lambos, Dylan Coghlan, Daemon HuntWill ButcherDylan Coghlan, Joel Hanley
Penalty Shots
Kyle McDonald, Emil Bemstrom, Arshdeep Bains, Samuel Fagemo, Alex Turcotte
Goalie
#1 : Calvin Pickard, #2 : Sebastian Cossa
Custom OT Lines Forwards
Kyle McDonald, Gabriel Fortier, Arshdeep Bains, Emil Bemstrom, Samuel Fagemo, Alex Turcotte, Alex Turcotte, Alex Whelan, Fredrik Olofsson, Alexandre Texier, William Bitten
Custom OT Lines Defensemen
Daemon Hunt, , Joel Hanley, Dylan Coghlan, Will Butcher


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
78W2224163222236755717200
All Games
GPWLOTWOTL SOWSOLGFGA
74300002222
Home Games
GPWLOTWOTL SOWSOLGFGA
3210000129
Visitor Games
GPWLOTWOTL SOWSOLGFGA
42200001013
Last 10 Games
WLOTWOTL SOWSOL
420100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
27518.52%25388.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
897161110750
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
14027251.47%11825047.20%4711241.96%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
161107171559245


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Day
Game
Visitor Team
Score
Home Team
Score
ST
OT
SO
RI
Link
1 - 2025-04-244Americans3Phantoms2WBoxScore
3 - 2025-04-2612Americans2Phantoms6LBoxScore
5 - 2025-04-2820Phantoms3Americans2LBoxScore
7 - 2025-04-3028Phantoms4Americans6WBoxScore
9 - 2025-05-0236Americans3Phantoms4LXBoxScore
11 - 2025-05-0444Phantoms2Americans4WBoxScore
13 - 2025-05-0652Americans2Phantoms1WBoxScore
15 - 2025-05-0857Americans-Griffins-
16 - 2025-05-0961Americans-Griffins-
17 - 2025-05-1065Griffins-Americans-
18 - 2025-05-1169Griffins-Americans-
19 - 2025-05-1273Americans-Griffins-
20 - 2025-05-1377Griffins-Americans-
21 - 2025-05-1481Americans-Griffins-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price2515
Attendance6,0003,000
Attendance PCT100.00%100.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
7 3000 - 100.00% 81,250$243,750$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 2,424,870$ 2,424,870$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 7 0$ 0$




Overall
Home
Visitor
Year
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
GP
W
L
T
OTW
OTL
SOW
SOL
GF
GA
Diff
P
G
A
TP
SO
EG
GP1
GP2
GP3
GP4
SHF
SH1
SP2
SP3
SP4
SHA
SHB
Pim
Hit
PPA
PPG
PP%
PKA
PK GA
PK%
PK GF
W OF FO
T OF FO
OF FO%
W DF FO
T DF FO
DF FO%
W NT FO
T NT FO
NT FO%
PZ DF
PZ OF
PZ NT
PC DF
PC OF
PC NT
Regular Season
20248236300852129226923412212052001481133541141803321144156-12982925308223397909510279389692293455259475444618332796623.66%1834277.05%11438299747.98%1370285747.95%644136247.28%2038143018565901063542
Total Regular Season8236300852129226923412212052001481133541141803321144156-12982925308223397909510279389692293455259475444618332796623.66%1834277.05%11438299747.98%1370285747.95%644136247.28%2038143018565901063542
20247430000022220321000001293422000001013-3822416300107502228971611236755717227518.52%25388.00%014027251.47%11825047.20%4711241.96%161107171559245
Total Playoff7430000022220321000001293422000001013-3822416300107502228971611236755717227518.52%25388.00%014027251.47%11825047.20%4711241.96%161107171559245